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Abstract—Natural Language Interfaces for Databases em-
power non-technical users to interact with data using natural
language (NL). Advanced approaches, utilizing either neural
sequence-to-sequence or more recent sophisticated large-scale
language models, typically implement NL to SQL (NL2SQL)
translation in an end-to-end fashion. However, like humans,
these end-to-end translation models may not always generate
the best SQL output on their first try. In this paper, we
propose CYCLESQL, an iterative framework designed for end-
to-end translation models to autonomously generate the best
output through self-evaluation. The main idea of CYCLESQL
is to introduce data-grounded NL explanations of query results
as self-provided feedback, and use the feedback to validate the
correctness of the translation iteratively, hence improving the
overall translation accuracy. Extensive experiments, including
quantitative and qualitative evaluations, are conducted to study
CYCLESQL by applying it to seven existing translation models
on five widely used benchmarks. The results show that 1) the
feedback loop introduced in CYCLESQL can consistently improve
the performance of existing models, and in particular, by applying
CYCLESQL to RESDSQL, obtains a translation accuracy of 82.0%
(+2.6%) on the validation set, and 81.6% (+3.2%) on the test
set of SPIDER benchmark; 2) the generated NL explanations
can also provide insightful information for users, aiding in the
comprehension of translation results and consequently enhancing
the interpretability of NL2SQL translation'.

Index Terms—NL2SQL, Self-explanation, Feedback loop

I. INTRODUCTION

Natural language interfaces for databases (NLIDBs) [1]-[3]
democratize data exploration by allowing users to interact with
databases using natural language (NL), breaking down barriers
to information retrieval and data analysis. Consequently, the
development of NLIDBs has garnered significant attention
from both the data management and natural language process-
ing (NLP) communities since the late 1970s [4]-[7].

In light of recent advancements in machine learning, the
central focus of ongoing efforts to develop NLIDBs centers
around elevating the accuracy of translating NL to SQL
(NL2SQL) [8], [9]. This objective is primarily accomplished
via direct NL2SQL translation in an end-to-end manner, either
by adopting sequence-to-sequence (Seq2seq) models trained
on annotated data [10]-[17] or, more recently, by harnessing
large-scale language models (LLMs) that push the boundaries
of the field even further within the last two years [18]-[22].

10ur code is available at https://github.com/Kaimary/CycleSQL.
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Fig. 1: Translation accuracy on SPIDER validation set with varied
beam sizes (or chat completion choices). Accuracy for beam sizes
(or chat completions) > 1 is evaluated by matching any beam result.

Challenges. While significant advancements in enhancing
overall accuracy, current end-to-end models face persistent
challenges in producing desired quality output during their
initial attempt, owing to the treatment of language translation
as a “one-time deal”. Fig. 1 shows the translation accuracy
(defined as query execution result equivalence) on the SPIDER
[7] benchmark, with varied beam outputs for two Seq2seq-
based models? (i.e., PICARD [16], and RESDSQL [17]) or
diverse chat completion choices for two LLM-based models®
(i.e., GPT-3.5-TURBO and the state-of-the-art DAILSQL model
[22]). As indicated by the plateauing accuracy (below 80%)
observed when the beam size or the number of chat comple-
tions is set to 1, they may fail to generate best-quality transla-
tions in their initial attempts. However, expanding the search
space through wider beams or more chat completions steadily
improves accuracy, without necessitating modifications to the
underlying model architectures. This example shows that end-
to-end models may benefit from broader exploration options
to enhance translation quality over successive attempts.
Inspired by the feedback mechanisms [23], [24] used in
modern recommendation systems and iterative refinement
methods [25], [26] introduced in LLMs, we present CYC-
LESQL, an iterative framework built upon self-provided feed-
back to enhance translation accuracy of existing end-to-end
models. Diverging from the traditional end-to-end translation
paradigm, we introduce data-grounded NL explanations of
query results as a form of internal feedback to create a

2Most existing Seq2seq-based NL2SQL translation models utilize beam
search decoding method to maintain a list of top-K best outcomes.

3LLMs often use a specific parameter to generate various responses. Refer
to https://platform.openai.com/docs/api-reference/chat/create#chat-create-n.
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9 2 Los Angeles Tokyo 1 Boeing 747-400 8430
3 7 Los Angeles Sydney 2 Boeing 737-800 3383
3 13 Los Angeles Chicago 3 Airbus A340-300 7120
10 68 Chicago New York 4 British Aerospace Jetstream 41 1502
9 76 Chicago Los Angeles 5 Embraer ERJ-145 1530
7 33 Los Angeles Honolulu 6 SAAB 340 2128
5 34 Los Angeles Honolulu 7 Piper Archer IIT 520
1 99  Los Angeles Washington D.C. 8 Tupolev 154 4103
2 346 Los Angeles Dallas 9 Lockheed L1011 6900
6 387 Los Angeles Boston 10 Boeing 757-300 4010
[Question]:

_ q g g q

‘= | Show all flight numbers with aircraft Airbus A340-300.
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-
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{

-

=

_ r [Translated SQL]

S | SELECT count(T1.*) X FROM Flight AS T1

- . . .

S | JOIN Aircraft AS T2 0N T1.aid = T2.aid

> WHERET2.name ='Airbus A340-300'

=

o

=

count(*)
ety

[SQL2NL-generated Explanation]

Find the number of flights that are operated by
aircraft with the name Airbus A340-300.
[Feedback] (Incorrect)

The translated SQL above is correct. )(

Fig. 2: A simplified example from the SPIDER benchmark.

self-contained feedback loop within the end-to-end process,
facilitating iterative self-evaluation of translation correctness.
Z SQL2NL back-translation for Self-Explanations? A nat-
ural way to generate self-provided feedback (explanations) in
NL2SQL translation may involve its reverse process, namely
SQL2NL. This entails establishing an NL-to-SQL-to-NL trans-
lation lifecycle, a concept analogous to back-translation [27],
[28]. Several studies have explored this technique [29]-[32]
to refine initial SQL outputs, but we posit that solely using
this “simple” back-translation to generate feedback may be
limited, as it lacks additional contextual information beyond
the NL and SQL components. Consider an intuitive example in
Fig. 2, which shows an NL query alongside a translation from
an existing model. By simply using the SQL2NL technique,
however, incorrect “positive” feedback is generated: the mean-
ing of the explanation seems to align with the initial NL query,
whereas the underlying SQL query is deemed incorrect (i.e., an
incorrect aggregation function is used in the SELECT clause).
Thus, such a back-translated explanation may not adequately
serve as valid feedback for the NL2SQL process.

Our Methodology. We propose a plug-and-play framework
that facilitates seamless integration with existing end-to-end
NL2SQL models. By integrating with a conventional NL2SQL
process, CYCLESQL @ first rewrites the translated SQL
query to retrieve provenance information from the underlying
database for a specific query result. @ Following this, the
provenance is enriched by annotating the semantics of the
translated SQL query to its different parts. Next, @ a data-
grounded NL explanation is interpreted from the enriched
provenance to rationalize the query result by leveraging text
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generation techniques [26], [33]-[35]. Here, given that the
NL explanation integrates both data-level (provenance) and
operation-level (query) semantics, they possess significant
potential to function as self-provided feedback for various
NL2SQL models. Finally, (4) the generated explanation is used
to validate the correctness of the underlying translation itera-
tively, ultimately yielding a more reliable translation outcome.
To assess the effectiveness of CYCLESQL, we conduct a
comprehensive experimental evaluation on the widely-used
benchmark SPIDER, and its three variants, namely SPIDER-
REALISTIC [36], SPIDER-SYN [37], and SPIDER-DK [38], as
well as SCIENCEBENCHMARK [30], by applying CYCLESQL
to seven contemporary end-to-end models. The results show
that CYCLESQL can consistently enhance the translation ac-
curacy of all the models. Notably, by applying CYCLESQL to
RESDSQL (with T5-3B scale), CYCLESQL obtains a transla-
tion accuracy of 82.0% on the validation set and 81.6% on
the test set of SPIDER benchmark, achieving best-reported
result among the leading Seq2seq-based models on SPIDER
leaderboard*. Moreover, a qualitative evaluation, including a
case study and user study, is conducted to show that the ex-
planations generated by CYCLESQL can also greatly improve
user interpretability in the black-box NL2SQL process.
Contributions. We make the following three contributions:
(1) Feedback Loop in NL2SQL. We propose, CYCLESQL,
a plug-and-play framework to establish a self-contained
feedback loop within the NL2SQL process. CYCLESQL
employs data-grounded NL explanations as reliable feed-
back to iteratively validate the correctness of the transla-
tion, thereby enhancing the overall accuracy.
Rich Explanations for NL2SQL. The NL explanations
generated by CYCLESQL, which incorporate not only the
semantics of the query surface but also the semantics from
the data instance, provide insightful information for users
to understand the black-box NL2SQL translation process.
Quantitative and Qualitative Evaluations. We evalu-
ate CYCLESQL on five public benchmarks with seven
NL2SQL models, demonstrating its substantial impact
on performance improvements. Furthermore, a qualitative
evaluation is conducted to gauge the utility of the gener-
ated NL explanations in enhancing user interpretability.

2

3)

II. PRELIMINARIES
A. NL2SQL models

Seq2seq-based NL2SQL Models. A Seq2seq-based NL2SQL
model typically adheres to the encoder-decoder learning
framework [39] to translate NL queries to the corresponding
SQL queries. Given an input NL query X = {21, z2, - , 2}
and a database schema S = (T, C) that consists of a set of
tables 7" and a set of corresponding columns C, the model
uses an encoder to compute a contextual representation ¢ by
jointly embedding the NL query X with schema S. Afterward,
an autoregressive decoder is used to calculate a distribution
P(Y | ¢) over the SQL programs Y = (y1,--- ,yjy|)-

“https://yale-lily.github.io/spider
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Fig. 3: Overview framework of CYCLESQL

LLMs as NL2SQL Models. In light of recent advancements
in LLMs, current research [40], [41] endeavors to employ
LLMs as NL2SQL models without fine-tuning. Given an NL
query X and a prompt P as input, an LLM can be utilized
to generate the SQL query Y. Depending on the prompting
technique utilized, such as zero-shot, few-shot prompting, or
in-context learning, the prompt P may include instructions
[41], demonstrations [20], [22] or reasoning chains [19], [42].

B. Provenance

Provenance elucidates the origin and history of the data
throughout its lifecycle. Research has studied provenance
semantics for various query classes in databases [43], [44].
The most common forms of database provenance describe the
relationships between the data in the source and its correspond-
ing output [45]. This includes explaining where the output
data originated in the input (commonly known as where-
provenance) [46], revealing inputs that explain why an output
record was produced (referred to as why-provenance) [47],
[48], or providing a detailed account of how an output record
was generated (referred to as how-provenance) [49]. This work
adopts why-provenance, which functions as evidence within
a query, comprising a subset of tuples that guarantees the
presence of a specific tuple in the output.

Formally, given a query ¢ having relations R =
{Rj,,---, R}, the why-provenance P(q, D) for database
D and the query g to be a subset of Rj x --- X R;,
where a provenance model determines which tuples from the
cross product belong to P(q, D). For a tuple ¢t € ¢(D), the
provenance P(q,D,t) is the subset of the provenance that
contributes to ¢ (decided by the provenance model).

III. CYCLESQL OVERVIEW

This section first provides a formal definition of the NL ex-
planation we defined and presents the overview of CYCLESQL.

A. Natural Language Explanation

Explanations of database query answers can differ across
various dimensions, encompassing clarifying unexpected
query outcomes [50], explaining the rationale behind generat-
ing intriguing results from a query [51], and justifying how an
answer aligns with the query criteria [33], [34]. Each of these
dimensions serves a distinct purpose in query explanation.

In this work, we focus on the explanation for why an answer
qualifies a given query and provide the following definition,
DEFINITION 1. (Explanation) Given an NL query X that can
be parsed against the database D to retrieve a result set R,
an explanation e, takes the form of the NL expression that
explains the intermediate reasoning steps behind querying X
on database D to obtain a representative result v € R.
DEFINITION 2. (Intermediate Reasoning Step) An interme-
diate reasoning step refers to a cognitive process that involves
logical operations or transformations on the instances over
database D, taking place between the NL query X and the
query result r. Each reasoning step contributes to refining the
understanding of X and progressively approaching r.
Example 1. The following shows an NL explanation generated
by CYCLESQL (details of the generation process will be
explained in late sections), which mostly includes two inter-
mediate reasoning steps specifying the details of the reasoning
process from the initial NL query to the query result based on
the translated SQL query in the example shown in Fig. 2.

Explanation: The query returns a result with one column of aggregation
type (count) and one row. That is, for flights with aircraft Airbus A340-300,
(intermediate reasoning step ©)

there are 2 flights in total.
(intermediate reasoning step ®)

B. Feedback Loop in CYCLESQL

A high-level view of CYCLESQL is presented in Fig. 3.
When seamlessly integrated into the end-to-end NL2SQL
process of a designated translation model, the fundamental
operational sequence of CYCLESQL unfolds as follows:

(1) CYCLESQL first tracks the provenance information of the
to-explained query result to retrieve data-level information
from the underlying database.

(2) To align with user intent, CYCLESQL further enhances the
provenance information by associating it with operation-
level semantics derived from the translated SQL query.

(3) An NL explanation of the query result is then interpreted
by CYCLESQL based on the enriched provenance.

(4) The NL explanation is subsequently used to verify the
correctness of the underlying translation, iterating through
the above steps until a validated translation is achieved.

Among these, the “hybrid” semantics that joins data-level
provenance and operation-level query semantics is unique to
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our setup, and we found that the semantics are crucial for
establishing a reliable feedback loop for NL2SQL.

Data Tracking. In the initial stage (illustrated in Fig. 3-
@), CYCLESQL entails tracing the lineage of the query
result obtained from the execution of a SQL query sampled
from an underlying translation model, intending to gather
provenance information. In CYCLESQL, the tracing process is
implemented by rewriting the sampled SQL query to retrieve
all relevant data-level details from the underlying database.
For example, regarding the query result shown in Fig. 2, its
provenance corresponds to tuples F'2, F'3, where the column
“aid” is equal to 3 in “Flight” table, as below,

tuplelD | aid name fino origin destination
F2 3 | Airbus A340-300 7 Los Angeles Sydney
F3 3 | Airbus A340-300 | 13 | Los Angeles Chicago

Semantics Enrichment. In the following stage (depicted
in Fig. 3-@), CYCLESQL further enriches the provenance
information by integrating the operation-level semantics from
the translated SQL query into its different parts. Since the
translated SQL query captures the semantics from the initial
NL query, this integration enables the reflection of user query
semantics across different data segments of provenance. CY-
CLESQL achieves this by decomposing the SQL query into a
set of query units and associating the semantics of each query
unit with relevant parts of data provenance.

Continuing the example in Fig. 2, the column “name” in the
provenance table is enriched with the filtering semantics from
the WHERE operation, and the whole table is associated with
the count semantics from SELECT to attempt to reflect the
“all flight numbers” semantics in the original NL query.
Explanation Generation. In the subsequent stage (depicted
in Fig. 3-@), CYCLESQL interprets the enriched provenance
information into an NL expression, generating a detailed
explanation for the given query result. Inspired by the success
of text generation techniques, CYCLESQL utilizes a simple but
effective rule-based method to synthesize the NL explanation
mechanically from the given enriched provenance information.
For instance, the NL explanation produced by CYCLESQL for
query result in Fig. 2 can be seen in Example 1 in Section
II-A, which interprets the meaning of number 2.
Translation Verification. In the final stage (shown in Fig. 3-
@), CYCLESQL employs the generated explanation as self-
provided feedback to verify the accuracy of the underlying
NL2SQL translation. To accomplish this, CYCLESQL formu-
lates the validation process as a natural language inference
(NLI) task and uses a deep-learning model to determine
whether the NL explanation entails the original NL query,
thereby validating the correctness of the translation. CyC-
LESQL iterates through the above stages until validation suc-
ceeds, ultimately leading to an improved translation outcome.
Continuing the example in Fig. 2, CYCLESQL may recognize
that expressions such as “there are 2 flights in total” in the
explanation are not aligned with the “all flight numbers”
semantics of the initial NL query, thereby the translated SQL
query is validated as incorrect. In response, CYCLESQL solicits
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another sampled SQL query from the underlying translation
model, repeating this process until the validation succeeds.

IV. METHODOLOGIES

A. Provenance via Query Rewriting

To explain an individual query result, the essential element
is detailed provenance information. This information is akin
to the provenance table introduced in [51], serving as an im-
mediate form of explanation that describes how a query result
is derived from the data stored in the underlying database.
Acknowledging the relational semantics in SQL, wherein each
operator generates its result tuple by tuple from its operand
tables [52], we employ the guery inversion methods [53], [54]
to capture provenance information using query rewriting. In
this way, CYCLESQL inverts transformations performed by a
given SQL query to determine the source tuples that have
contributed towards the result set.

Specifically, given an executed SQL query with a specific
to-explained query result, CYCLESQL employs the following
three heuristic rules to automatically rewrite the SQL into a
query that can be executed to capture provenance.

o Rule 1 (Result Transformation Rule). Intuitively, the query

result may specify the particular column and value that
satisfies the query criteria. Hence, the initial step in the
rewriting process is to translate the query result into a WHERE
clause to explicitly specify the result-specific condition and
incorporate it back to the original query.
Note that in some cases, a query result is not associated
with a specific column (e.g., when referring to all columns
in the referenced table using the asterisk symbol (*)). In
such cases, the application of this rule may be skipped.

e Rule 2 (Projection Enhancement Rule). We observe that
every column referenced in a SQL query (irrespective of the
associated operator) provides valuable hints for provenance.
Therefore, we extract all columns used in the original
SQL query and incorporate them as additional projection
columns. Besides that, we also include the primary keys of
those referenced tables as part of the projection columns.
Acknowledge that retrieving all columns in the referenced
tables for provenance may be more straightforward. How-
ever, introducing this rule can aid in crafting a more concise
explanation using more relevant provenance information.

o Rule 3 (Aggregation Deconstructive Rule). Since aggrega-
tion functions (and the GROUP BY clause) may collapse
input data rows, they inherently conceal the ability to
track the provenance. Therefore, we invert the potential
transformations by simply eliminating aggregation functions
(and GROUP BY clause) to unravel the lineage of the data’.

Example 2. Fig. 4 illustrates the query rewriting process
applied to the translated SQL query presented in Fig. 2. The
rewritten SQL query is transformed by applying Rule 2 to

SNote that these operations are temporarily excluded for query rewriting
purpose. They will be revisited in the following phase for query semantic
annotation. More details can be found in the later section.
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Aircraft
tuplelD

name
Boeing 747-400
Boeing 737-800
Airbus A340-300

| SELECT count(T1.*) FROM Flight AS T1
JOIN Aircraft AS T2 ON T1.aid =T2.aid L
. WHERE T2.name = ‘Airbus A340-330 ) S

Query Rewriting

- Flight
SELECT T2.name, tuplelD
> T1.aid, T1.flno, T1.origin, T1.destination F 9 | 2
FROM Flight AS T1
JOIN Aircraft AS T2 ON T1.qid=T2.aid
\_ WHERE T2.name = 'Airbus A340-330'

origin__| destination

Los Angeles |  Tokyo

Los Angeles |  Sydney

Chicago

Los Angeles

Fig. 4: Provenance querying using a rewritten SQL query.

retrieve the column from the condition and Rule 3 to eliminate
the aggregation by replacing it with relevant columns.

It is important to note that as CYCLESQL attempts to
trace the provenance information of a given query result by
retrieving the relevant data records, the absence of a result
from an SQL query may indicate a lack of corresponding
provenance information. Therefore, CYCLESQL skips this step
for empty-result queries and uses the operation-level semantics
directly (see the subsequent section) to generate the explana-
tion instead. Exploring more effective strategies for managing
empty-result queries within the context of CYCLESQL could
pose an interesting research problem.

B. Semantics Enrichment via Annotating

The main observation arising from the provenance enrich-
ment process is that while provenance can reveal details about
the query result derived from the data, it is insufficient to
provide insights into why the query result satisfies the query
criteria [51]. To give a taste of the explanation that can be
produced using provenance information alone, an explanation
is exemplified as follows for the example in Fig. 4,

» Flight number 7 and flight number 13 are both associated
with the Airbus A340-300 aircraft.

Although the explanation interprets the details about those
flights with “Airbus A340-300” aircraft, it does not clarify
how the resulting number 2 is derived. This lack of explicit
information may impede CYCLESQL from getting a valid
explanation suitable for validating the translation afterward.
To address the limitation above, CYCLESQL enriches the
provenance by integrating the operation-level semantics of the
SQL queries (both the original and rewritten SQLSs) to better
reflect user query intent. The fundamental concept behind this
enrichment is that different parts of the query may “contribute”
to different parts of the provenance information (e.g., the parts
of a rewritten query) or play a role in transforming the query
result based on different parts of the provenance (e.g., the parts
of an original query). We hope to identify semantics alignment
between provenance elements and query operators, ensuring
all necessary semantics are properly captured and combined.
Specifically, CYCLESQL initially treats the SQL query as
a text string and divides the string into chunks that corre-
spond to each clause in the SQL query®. Each query clause
contains its query elements, such as the column “name” in
the WHERE clause, representing its semantics. CYCLESQL then

6We observe that a subquery embodies complete semantics in a SQL query.
Therefore, we consider a subquery as a whole when performing the division.
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simply navigates through the provenance (table) to locate the
corresponding element mentioned in the query clauses and
overlays annotations atop it as their semantics labels. If a
query clause contains an asterisk element (*), we place the
annotation atop the table to signify global semantics across
the referenced table, rather than on an individual element. The
meaning of the asterisk element is subsequently determined
during the explanation generation process.

@ SELECT count(*)

)@/){WHERE name = ‘Airbus A340-300’]

_______ 1

tuplelD | Flight.aid | Aircraft.name ! | Flight.fino
<A3, F2> 3 Virgin America 7
<A3, F3> 3 Virgin America 13

Fig. 5: An example of the enriched provenance information.

Example 3. Fig. 5 illustrates the enriched provenance table
retrieved in Fig. 4, where the table is enriched by one
annotation (i.e., @) from the original translated query, along
with one annotation (i.e., @) derived from the WHERE clause.

C. Explanation Generation via Graphing

At the core of CYCLESQL lies a basic question: how to
interpret the enriched provenance information to a textual
expression in free-text forms that are highly expressive and
meaningful to explain the query result. Motivated by previous
works on formulating provenance in NL [33], [34] and earlier
SQL2NL works [35], [55], CYCLESQL employs a simple but
effective rule-based method to synthesize the NL explanation
using the enriched provenance information.

More specifically, CYCLESQL initiates the process by gen-
erating a brief text summary of the query, outlining details
such as the number of columns and rows in the returned result
set. Next, CYCLESQL partitions the enriched provenance table
of a specific query result into distinct segments, proceeding
with the incremental construction of a provenance graph. A
provenance graph, denoted as G,,(V,,, E,), is a directed graph
where nodes in V), represent provenance elements, such as
the table element “Flights”, the column element “filghtNo”
and the value element “/377”. Each edge in E, is associated
with a type, indicating a specific relationship between two
elements. For example, as for the provenance table in Fig. 5,
Gy has a joint table node “Airlines-Flights”, which has a
“hasAttribute” type edge that connects with the column node
“uid”; the column node “uid”, in turns, has a “hasValue” type
edge that connects with the value node “/2”. Then, CYCLESQL
assigns the query annotations we obtained in Section I'V-B as
the semantics labels to each corresponding element. Finally,
CYCLESQL traverses the graph G, to generate NL phrases
for each provenance element with its associated labels. The
NL phrases (and the initially generated summary) are then
concatenated to generate the NL explanation by using some
descriptive expressions (e.g., ‘so’, ‘for’, etc.). We present the
explanation generation process in Algorithm 1.

Example 4. The following explanation is generated from the
provenance graph in the motivating example,
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» The query returns a result with one column of aggregation
type (count) and one row. For flights with aircraft, named
Airbus A340-300, there are 2 flights in total.

While the generated explanations may lack naturalness, we
posit that they are informative for capturing the core semantics
conveyed in the given provenance information targeted for a
specific query result. These explanations can further be refined
using a “polishing model” (e.g., a few-shot prompted LLM) to
enhance their naturalness, especially for better user readability.
(Refer to the evaluation in Section V-B for an example.)
Join-related Semantics. We observe that the semantics ex-
pressed in provenance may become much more abstract when
derived from join-related operations [35]. For example, the
provenance table shown in Fig. 5 represents a new “table”
derived from the join operation of the underlying SQL query,
and the semantics of the aggregation-related semantics (i.e.,
count semantics) become abstract after the table joining.

Algorithm 1: Natural Language Explanation Generation

Inputs : R: query result set; 7,.: enriched provenance
table for a query result r.
// Summarize query statistics from the
result set
Sop = GENERATE—-SUMMARY (R)
// Build the provenance graph for a
specific result
{pr,}1~4 < BUILD-GRAPH (T})
fori=1,--- ,ndo
// Generate NL phrase for each
provenance element
$; = GENERATE—-PHASE (p,,)
end
s = CoMPOSE—PHASE (S0, 81, " ,Sn)
Output: s: A textual string about explanation

To capture the join semantics, we introduce a heuristic
method to discover the semantics before the NL phrase gen-
eration. Specifically, we represent database schemata as graph
structures, with nodes as tables and edges denoting relation-
ships between the tables. We create an inter-table graph pool
comprising pre-defined common graph topologies to capture
potential semantics. For example, in a three-node graph where
one node (table) connects to two other nodes (tables), this
structure may represent object-attribute semantics.

When a join relation appears in a query, we convert it into
the graph structure as described above and then check for
isomorphism with any pre-defined graphs to determine the
corresponding join semantics. If no isomorphism is found, we
use the associated table names to represent the join semantics
instead. Fig. 6 shows an example of a three-table query, where
the “Singer_in_concert” table has two foreign keys linked to
the “Concert” and “Singer” tables. When matched with pre-
defined graphs, an isomorphism graph (i.e., the three-node
graph with subject-relationship-object semantics) is identified,
enabling the join semantics to be instantiated as “singer with
concert” using the specific table names.
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Fig. 6: Join-related semantics discovery in CYCLESQL.

D. Explanation as NL2SQL Verifier

Once the NL explanation for a specific query result is
generated, the subsequent question for CYCLESQL is how
to effectively leverage the NL explanation to validate the
translation. Drawing inspiration from recent achievements in
the NLP field, we thus formulate the translation validation
problem as a textual entailment task (a.k.a. NLI task) [56],
[57] and employ deep learning techniques to construct an NLI
model for this purpose. Here, the NLI model aims to evaluate
the semantic coherence between a given NL query and the
NL explanation associated with a query result. The NL query
fragment, labeled as hypothesis (H), is inferred from the NL
explanation fragment known as premise (P)’. In other words,
an explanation P entails an NL query H, if H is considered
to be true within the context of the corresponding text P.
Remark. To implement the NLI model, popular choices
include utilizing ready-to-use LLMs [18], [58], off-the-shelf
NLI models [59], [60], or crafting a custom NLI model from
scratch. However, we found that the first two choices may yield
inferior performance when contrasted with the latter. (Refer to
the experiments presented in Section V-A4 for further details.)
Therefore, in this paper, we introduce a dedicated NLI model,
as outlined below, to serve as the verifier instead.

Fig. 7 presents the architecture of the dedicated NLI model.
Building upon prior works [61], [62], we adopt a similar
approach to construct the model, refining it via fine-tuning for
specific classification objectives. We use a unified text encoder
to jointly encode the hypothesis and the premise, applying a
pooling layer to create a unified embedding vector, which is
then fed into a classification layer for output.

@ Unified Text Encoder — Posifive Instance

Premise Hypothesis ) )
NL Explanation NL Query Poling Layer ---» Negative Instance
(+SQLrResulf Classification Layer
concatenate o
ense
(Pips o pn by by - pr—
concatenate
T TN r— Dense
L P1 P2 Pn ] R Wi
concatenate N
0 o ense
[ A A — " i hy

L T T )
text input

text encoding text matching

Fig. 7: NLI model with entailment and contradiction pairs.
Training Data. The training data is enforced as a set of
premise-hypothesis-label triples, denoted as {(p;, hi, i)} 4,
where p; is an explanation (inclusive of the associated query

"To provide extra context, we also include the query result along with the
SQL query within the premise, using a special token (|) to separate each part.
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result and SQL query), h; is an NL query, and [; is a classifi-
cation label, with possible values including “entailment” (+1)
and “contradiction” (—1). We collect the data as follows:

o For positive samples (i.e., instances with the “entailment”
label), we create samples using human-curated data (NL-
SQL pairs) from public benchmarks. Initially, we execute
the provided SQL query against the underlying database
to get the query results. A specific query result is then
randomly selected to generate the explanation using CY-
CLESQL. Thus, a triple (p4, h,+1) is formed.

o For negative samples (i.e., instances labeled as “contradic-
tion”), we generate samples from the erroneous transla-
tions produced by existing NL2SQL models on the public
benchmarks. Rather than relying on human-labeled ground-
truth SQL queries in public benchmarks, we initiate the
process with the “incorrect” SQL queries generated by
existing NL2SQL models and employ a similar approach
for positive counterparts to complete the generation. Thus,
a triple (p_, h,—1) is then formed.

In this work, we use the public benchmark’s training set to
build the verifier’s training set (details in the next section).

Loss Function. Cross-entropy loss is a well-adopted loss func-
tion in classification tasks. However, owing to the significantly
greater number of negative samples collected from various
translation models compared to the positive ones from human-
curated benchmarks, the label distribution in the training set
becomes highly imbalanced, resulting in significant training
bias. To alleviate this issue, we utilize the focal loss [63] as
our classification loss, which is defined in the following way,

FL(pt) = —(1 —pi)" - log(p:)
Dy = { D if y=1 (1)

1 —p otherwise.

where y € £1 specifies the ground-truth class and p € [0, 1]
is the model’s estimated probability for the class with label
y =1, and + is the focusing parameter controlling the down-
weighting of well-classified examples.

V. EVALUATION

This section initiates with an experimental evaluation con-
ducted by applying CYCLESQL to state-of-the-art NL2SQL
models, thereby gauging its impact on their overall perfor-
mance improvement. Following this, a qualitative evaluation
incorporating a case study and a user study is carried out to
evaluate the quality of explanations produced by CYCLESQL.

A. Experimental Evaluation

1) Experimental Setup: Following are the details:
Datasets. We conduct experiments on the SPIDER dataset
and its three robustness variants, namely SPIDER-REALISTIC,
SPIDER-SYN, and SPIDER-DK, as well as on the complex
scientific SCIENCEBENCHMARK benchmarks.

« SPIDER [7] includes 10, 181 NL queries and 5,693 unique
SQL queries of 206 databases covering 138 domains. As it

uses different databases across its train, dev, and test data
sets, the model’s generalizability can be properly evaluated.
Since its test set is not available in public, our experiments
primarily focused on SPIDER validation set. We apply
CYCLESQL to RESDSQL and GPT-3.5-TURBO and get the
evaluation results on the test set (See Table I).

« SPIDER-REALISTIC [36] poses the challenges associated
with text-table alignments, creating a more realistic scenario
by omitting explicit column name mentions. This requires
models to adeptly map NL terms to relevant schema items.

« SPIDER-SYN [37] modifies original NL queries of SPIDER
by substituting schema-related terms with handpicked syn-
onyms. This challenges the reliance on lexical matching.

e SPIDER-DK [38] necessitates the models to know about
domain-specific knowledge for the SQL generation. Pre-
liminary observations reveal that current models encounter
difficulties meeting this elevated domain-specific demand.

e SCIENCEBENCHMARK [30] serves as a complex bench-
mark for three real-world scientific databases. For this
benchmark, domain experts crafted 103/100/100 high-
quality NL-SQL pairs for each domain, then augmented with
synthetic data generated using GPT-3.5.

Baseline NL2SQL Models. We consider the following two
types of baselines: Seq2seq-based translation models fine-
tuned on the SPIDER training set, including SMBOP [14],
PICARD [16], and RESDSQL [17], and LLM-based models,
such as GPT-3.5-TURBO, GPT-4, CHESS [32], and DAILSQL
[22]. We briefly describe each baseline model as follows.

e« SMBOP re-formats the top-down decoding method and
employs a reverse bottom-up decoding mechanism based
on GRAPPA [64], a pre-trained model for semantic parsing.

o PICARD constrains the auto-regressive decoders via incre-
mental parsing. We denote as PICARD3; as it is implemented
based on T5-3B model [65].

+ RESDSQL encodes the question and schema as a tagged
sequence and is implemented with T5 model in Base, Large
and 3B scales. Our experiments use RESDSQL with the latter
two scales, denoted to as RESDSQL; srge and RESDSQL3;,
and exclude its combination with NATSQL [66].

o GPT-3.5-TURBO® and GPT-4 stand out as two of the most
advanced LLMs. In our experiment, we perform experiments
on the two models using 5-shot prompting with a simple
instruction as depicted in the below example,

###Instruction

Given a database schema and NL question, and generate an SQL query.
###Schema

Table Player with columns *pID’, ’pName’, "yCard’, "HS’;

Table Tryout with columns ’pID’, ’cName’, ’pPos’, ’decision’;

###NL Question

For each position, what is the maximum number of hours for students
who spent more than 1000 hours training?

###Demonstrations

(demonstrations)

#it#Target SQL Query

8Specifically refers to the GpT—3.5-TURB0O-0125 version of the model.
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TABLE I: Overall translation results on SPIDER and its three variants, as well as SCIENCEBENCHMARK benchmarks (%). The fire
the NLI model with the respective training data of the underlying benchmark, while the ice

symbol indicates training
symbol denotes freezing the model weights.

SPIDER SPIDER VARIANTS SCIENCEBENCHMARK

Models VALIDATION TEST REALISTIC SYN DK ONCOMX CORDIS  SDSS

EM EX TS EM EX EM EX TS EM EX TS EM EX EX EX EX

Seq2seq-based Models

SMBOP Base 745 778 725 | 695 71.1 | 60.2 614 56.1 | 60.2 649 583 | 540 59.1 16.2 16.0 7.0
+CYCLESQL | 74.1 78.8 73.1 - - 59.8 622 567 | 59.1 655 586 | 533 598 17.2 16.0 8.0

PICARD Base 759 793 728 | 724 751 | 689 71.7 64.6 | 656 698 632 | 497 632 323 26.0 8.0
3B +CYCLESQL | 76.1 799 72.8 - - 687 719 646 | 659 708 63.6 | 503 63.6 333 24.0 8.0
RESDSQL Base 740 775 716 | 66.8 735 | 673 695 61.6 | 588 653 59.6 | 50.1 58.1 33.0 29.0 4.0
LARGE L CycLESQL | 751 805 74.0 | 689 77.1 | 69.1 736 642 | 61.6 69.6 632 | 505 61.5 35.0 32.0 8.0
RESDSOL Base 76.0 794 735 | 702 784 | 689 722 648 | 629 695 632 | 520 593 34.1 28.0 6.0
QL3y +CYCLESQL | 768 82.0 76.0 | 725 81.6 | 71.3 76,5 67.5 | 655 733 66.6 | 52.5 61.3 374 31.0 8.0

LLM-based Models
GPT-3.5-TURBO  Base 438 728 61.7 | 447 694 | 394 654 528 | 340 61.0 498 | 39.1 60.6 34.3 30.0 10.0
(5-SHOTS) +CYCLESQL | 49.2 778 66.2 | 50.6 75.1 | 465 71.1 56.7 | 40.0 66.7 554 | 43.7 65.6 434 34.0 12.0
GPT-4 Base 519 779 712 - - 467 686 553 | 452 750 644 | 537 685 51.5 40.0 14.0
(5-SHOTS) +CYCLESQL | 58.7 79.8 73.1 - - 49.0 706 569 | 46.2 760 663 | 574 68.5 56.6 43.0 15.0
CHESS Base 234  41.1 375 - - 212 397 366 | 174 370 325 | 195 356 64.6 46.0 40.0
+CYCLESQL | 25.6 423 382 - - 231 411 379 | 193 381 33.0 | 202 36.1 65.7 52.0 40.0
Base 65.1 813 74.1
DAILSQL3s | cycppsqL | 672 818 743

CHESS introduces a pipeline that retrieves relevant data, se-
lects an efficient schema, and synthesizes correct SQLs. We
use its published fine-tuned model® for candidate generation
and GPT-3.5-TURBO for the remaining LLM calls.

DAILSQL utilizes demonstration selection by analyzing NL
and SQL query similarity. In our experiments'’, we use

DAILSQL with GPT-3.5-TURBO, denoted as DAILSQLj 5.

Note that all three Seq2seq-based models are explicitly de-
signed to handle specific values in SQL queries. Thus, they are
capable of generating valid (executable) SQL queries, allowing
effective provenance tracking by CYCLESQL.

Training Settings. The NLI model is initialized by the T5-
LARGE model, incorporating a sequence classification/head on
top, achieved through a linear layer over the pooled output. We
modify the default cross-entropy loss used in the TS model
to the focal loss, setting the focusing parameter v and the
weighted factor o to 2.0 and 0.75, respectively. Additionally,
we re-scale the classification weights of the two classes to 2.7
and 1.0, respectively, accounting for the imbalanced training
data distribution. We then utilize the Adam optimizer with a
learning rate of 5e — 6 to train the model.

Training data. We use the baseline models to generate negative
samples by extracting erroneous translations from their outputs
on the SPIDER training data. Here, a translation is considered
erroneous if the execution result of the translated SQL diverges
from the ground truth. We used the script provided by SPIDER
authors to determine the equivalence of two different tuple sets
based on “bag semantics”, making the order irrelevant. As a
result, we collected about 30,000 training queries, including
positive samples derived from the SPIDER training set.
Inference Settings. To establish the feedback loop in the end-
to-end translation process, we apply CYCLESQL to the baseline
models in the following manner: Initially, each baseline model
generates a list of top-k£ candidate SQL queries for a given

%https://huggingface.co/AI4DS/NL2SQL_DeepSeek_33B

10We fail to reproduce its preliminary model, GRAPHIX [67], for pre-
generating queries. Therefore, our evaluation only uses the publicly available
pre-generated queries from the authors on the SPIDER validation set.
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NL query!!. Subsequently, CYCLESQL is applied to iteratively

validate each candidate SQL query of a baseline model. If the

validation succeeds, the candidate SQL query is considered as
the final translation result for the given NL query. Otherwise,

CYCLESQL repeats the process with the next ranked candidate

until no more candidate SQL queries remain to check. Notably,

if all candidate SQL queries from a baseline model fail
validation for the given NL query, the top-1 candidate SQL
query is designated as the outcome.

Evaluation Metrics. The metrics are syntactic accuracy (EM),

execution accuracy (EX), and test suite accuracy (TS).

« Syntactic Accuracy (EM) measures whether the generated
query exactly matches the ground truth, ignoring specific
values in the SQL statements.

« Execution Accuracy (EX) evaluates if the result matches

the ground truth by executing the generated SQL query.

Test Suite Accuracy (TS) refines the EX metric through

a distilled test suite of databases, examining if the trans-

lated query passes all EX assessments across these distilled

databases. For evaluation, we utilize the script provided by

[68] to generate an augmented 100-fold distilled database.

2) Results on SPIDER: Table I presents our main results.

CYCLESQL consistently improves over all base models,

particularly evident in the execution and test suite accuracy

metrics'?. One remarkable outcome is observed when applying
to RESDSQL3;, obtaining an execution accuracy of 82.0% on
the validation set and 81.6% on the test set of SPIDER. This
performance surpasses the best-reported result among leading

Seq2seq transformer-based models on the leaderboard.

It is worth noting that, unlike Seq2seq-based models, CyC-
LESQL significantly enhances the syntactic accuracies of LLM-
based counterparts. This notable difference stems from the fact
that LLMs serve as NL2SQL models without tailored fine-
tuning on existing benchmarks. This inherent diversity in the

HFor those Seq2seq-based models, we use beam search and set &k to 8; For
those LLM-based counterparts, we specify the API parameter to 5 instead.

2Given that the NLI model considers a translation as correct based on
the execution equivalence criteria (as described in Training Settings in this
section), we may expect some fluctuations in the syntactic accuracy evaluation.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 27,2025 at 15:51:53 UTC from IEEE Xplore. Restrictions apply.



generation can be complemented by CYCLESQL (i.e., training
on benchmark-specific data), enabling LLMs to align more
effectively with benchmark-specific targeted outputs.

On the other hand, applying CYCLESQL to PICARD yields
limited performance gains, mainly due to lower-quality sam-
pled queries. That is, PICARD struggles to generate the correct
SQL within the top sampled outputs (See Table 8a for more
details), requiring multiple attempts to find the correct query.
This emphasizes the need for the NLI model used in CY-
CLESQL to robustly identify preceding incorrect translations.
In addition, CHESS exhibits poorer performance compared to
other baselines. Upon examining the failed cases, we found
that this is due to limitations in the evaluation script with
semantically equivalent queries: CHESS tends to generate
“ID-like” projection columns, which the evaluation marks as
incorrect, even when the semantics match the ground-truth
(e.g., discrepancies between count(id) and count(¥)).
Break-down Results. Table II provides a breakdown of the ex-
ecution accuracy on SPIDER, categorized by the SQL difficulty
levels defined in SPIDER. Not surprisingly, the performance
of all the models drops with increasing difficulty. Notably, the
application of CYCLESQL leads to a consistent improvement,
particularly in “Medium” and “Hard” queries for all translation
models, except for a slight dip observed in “Hard” queries with
SMBOP. In addition, a significant improvement is observed
in “Extra Hard” queries across the four LLM-based models
upon the application of CYCLESQL, which, in particular,
achieved 59.6% accuracy on GPT-4. This suggests that LLM-
based models can generate complex queries through iterative
attempts, and CYCLESQL effectively aids in discerning and
selecting queries from these successive attempts.

TABLE II: Execution accuracy (%) by SQL difficulty levels.

Model Easy Medium Hard Extra Hard
Base 90.7 827 70.7 52.4
SMBoP +CYCLESQL 90.7 841114 695015 530006
. Base 95.6 85.4 67.8 50.6
PICARDsy +CYCLESQL 95.6 86.1j0.)  69.5411.7) 50.6
Base 923 834 66.1 512
RESDSQL
QLLarce -};CYCLESQL 93.;?01_2) 86.;g70_7> 73.25(?,9) 53?’5(7_4)
o ase | 5. . .
RESDSQL3n cyeppsqr 94.0 890133 T47(192)  53.0(,0.4)
GPT-3.5-TURBO  Base 84.3 78.5 65.5 48.2
(5-SHOTS) +CYCLESQL | 86.3(12.0)  83.0(145) 73.0(17.5) 56.0(17.8)
Grr-4 Base 50.3 843 63.8 56.6
(5-SHOTS) +CYCLESQL | 90.7(10.4)  85.4(31.1)  66.7(129) 59.6(13.0)
Crpss Base 70.2 253 39.7 9.3
) J];CYCLESQL 71.§le,_4) 25.866(20_3) 41.717@0,_4) 21~567(T22-3)
ase . . A .
DAILSQL3s cyeppsqL 91.1 868103 T6Gas)  5901s)

Scalability Evaluation. To improve models’ accuracies, the
iterative process involved in CYCLESQL may take extra time
during the model inference. To assess its accuracy-latency
tradeoff, we report the average iterations required by CycC-
LESQL and compare the inference time of baseline models with
or without CYCLESQL. Note that we make the comparison in
an online setting. That is, we assume that all the trained neural
network models have already been loaded into the memory.
Table 8a shows that upon integration with CYCLESQL,
most baselines can find the “best” translation results within
1 ~ 2 iterations, except PICARD, which may require about 4
iterations due to relatively lower quality of its sampled SQL
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queries as we mentioned earlier. On the other hand, as depicted
in Fig. 8b, given that each baseline model can generate a list
of top-K query candidates in a single inference process, the
additional execution time overhead incurred by CYCLESQL is
minimal’3. This showcases that CYCLESQL strikes a favorable
balance between translation and inference latency in its current
settings. In addition, the inference time of different models
heavily depends on their respective model sizes. For example,
SMBOP with approximately 360 million parameters, demon-
strates notably faster performance compared to RESDSQLj3,
which boasts around 3 billion parameters.

(a) Average iterations of CYCLESQL on SPIDER validation set

SMBOP PICARD RESDSQL{srge | RESDSQL3; | GPT-3.5-TURBO
Average | (+CYCLESQL) | (+CYCLESQL) | (+CYCLESQL) | (+CYCLESQL) (+CYCLESQL)
Iterations 2.44 3.78 1.90 1.88 1.87
] I
+CYCLESQL
SMBOP Base Model
RESDSQLLARGE

RESDSQLs, Ej
GPT-3.5-TURBO «E.I

0 500 1,000 1,500 2,000

Average Model Inference Time (ms)
(b) Inference latency comparison with or without CYCLESQL

Fig. 8: Scalability evaluation on CYCLESQL.

3) Results on Robustness Settings.: To validate the robust-
ness, we use the frozen verifier (trained only once on the SPI-
DER training set) and evaluate the performance of CYCLESQL
on the three SPIDER variants and SCIENCEBENCHMARK.
Table I reports the comprehensive results.

The results show that CYCLESQL can still consistently
enhance the performance of the models across all bench-
marks. We attribute this to the incorporation of rich seman-
tics from the data into the explanations used to train the
verifier and thus exhibit its robustness in terms of question
perturbations. Additionally, due to the complexity of queries
in SCIENCEBENCHMARK, most models perform poorly, with
CHESS being a notable exception, underscoring the challenge
of handling queries in real-world databases.

4) Analysis of CYCLESQL: The two primary components
of CYCLESQL are feedback, and verifier. To gain a deeper
understanding, we perform additional experiments in this sec-
tion to analyze the importance of these two components. Our
exploration centers around the following two key questions:

(1) What impact does utilizing a more natural (simpler)

approach for generating feedback have on CYCLESQL?

(ii) Is the reconstructed NLI model the principled verifier

for CYCLESQL compared to other alternatives?
Impact of Feedback Quality. Self-provided feedback plays a
crucial role in CYCLESQL. To quantify its impact, we conduct
a comparative experiment by adopting a simpler method (i.e.,

3Due to the decoding process of PICARD necessitating interaction with a
web service to validate each predicted token, the inference time of PICARD
is time-consuming. Therefore, we omit it from this comparison.
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SQL2NL) to generate the feedback for CYCLESQL: providing
the generated SQL query along with the database schema
and asking an LLM'" to generate the NL explanation (i.e.,
feedback) directly. The feedback is then used in a similar
way to train the verifier under the same training settings as
those employed previously. We compare the performance of
CYCLESQL with verifiers resulting from different feedback
settings, by applying to RESDSQL; szge and GPT-3.5-TURBO.
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SPIDER REALISTIC SYN
(b) Execution accuracy results on GPT—3.5—TURBO
Fig. 9: Execution results on two models compared with SQL2NL.

Fig. 9 presents the EX results across the four SPIDER-
related benchmarks. It is evident that relying on the feedback
generated by the SQL2NL approach becomes unreliable for
the models, which may even lead to a negative impact on their
performance when applying to RESDSQLy srge- The findings
emphasize the importance of feedback quality, demonstrating
that the feedback generated by the designed approach used in
CYCLESQL embeds rich semantics, thus establishing a reliable
feedback loop inside the NL2SQL process.

Impact of Verifier Selection. Concerning the verifier con-
struction crafted within CYCLESQL (as outlined in Section
IV-D), a natural question may arise about the necessity of
the selected design. Therefore, we select two “strawman”
verifiers to replace the one used in CYCLESQL: one is a 5-shot
prompted GPT-3.5-TURBO, and another is an off-the-shelf
pre-built NLI model, named SEMBERT [59]. Table III shows
the translation results of CYCLESQL embedded with different
verifiers by applying to RESDSQL3,; on SPIDER validation set.

As can be seen, the performance under the current setting
showcases notable enhancements compared to the other two
“strawman” verifiers. It is noteworthy that utilizing the few-
shot prompted GPT-3.5-TURBO can also serve as a capable
verifier straight out of the box, thereby bringing some benefits
to the base model. In addition, due to the disparity between
NL-explanation pairs and sentence pairs in public datasets,
the pre-trained SEMBERT model struggles to provide reliable
verification outcomes, resulting in adverse effects.

“In our experiment, we choose to use GPT-3.5-TURBO for the evaluation.
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Additionally, we compute three Oracle scores to estimate
future headroom. Assuming a perfect verifier is used, which
assigns the label “entailment” only when the translated SQL
matches the ground truth, it boosts accuracy to 84.4%, 86.9%,
and 82.5% for the three evaluation metrics, respectively.

TABLE III: Translation results of different verifier selections.

Model Variant EM EX TS

Base Model (RESDSQL3) 76.0 79.4 735
+CYCLESQL 76.8“0.8) 82‘0(TT2-6) 76'0(TT2-5)
+CYCLESQL (w/ LLM verifier) 749111y 80.1¢po.7)  73.8(10.3)
+CYCLESQL (w/ pre-built NLI verifier) ~ 73.0¢y1.9)  77.6(11.8) 71.7(11.8)
+CYCLESQL (w/ oracle verifier) 84.4 86.9 82.5

5) Error Analysis: To better understand CYCLESQL,
we examined the failure translations of CYCLESQL (with
RESDSQL3) on SPIDER validation set. We identify the fol-
lowing two major categories for the failures.

o Semantics Drift Problem. Some translation errors stem
from inaccurate verification, especially when there is a
semantic divergence between parts of the NL query and
the generated explanation. This misalignment can cause
the validator to misinterpret or “overlook™ the entailment
relationship, as illustrated in the following example,

NL Query: Give the names of countries that are in Europe and
have a population equal to 80000.

Predicted SQL Query:

SELECT name FROM country

WHERE continent 'Europe' AND population >= 8000
False-Positive Generated Explanation:

The query returns a result set with 1 column (name) and 38 rows, filtered by
continent equal to Europe and a population greater than or equal to 80000.
Among them, the result, for example, country, name Estonia, continent is
Europe, the population is 1439200 greater than or equal to 80000.

Ground-truth SQL Query:

SELECT name FROM country

WHERE continent = 'Europe' AND population
Generated Explanation for Ground-truth SQL:
The query returns a result set with 1 column (name) and 38 rows, filtered by
continent equal to Europe and a population greater than or equal to 80000.
Among them, the result, for example, country, name Estonia, continent is
Europe, the population is 1439200 equal to 80000.

8000

Such failures may be mitigated if a more fine-grained su-
pervision signal is provided during validator model training.
« Explanation Quality Problem. Another source of trans-
lation errors stems from the quality of the generated NL
explanation, which may convey inaccurate or incorrect se-
mantics. An illustrative example is provided below,

NL Query: Count the number of friends Kyle has.

Predicted SQL Query:

SELECT count (*) FROM highschooler AS T1
JOIN friend AS T2 ON T1l.id T2.friend
WHERE T1.name 'Kyle'

Ground-truth SQL Query:

SELECT count (*) FROM highschooler AS T1
JOIN friend AS T2 ON T1l.id T2.student _
WHERE T1.name 'Kyle'

= id

id

Generated Explanations for both SQL Queries:

The query returns a result set with one column with aggregation type (count)
and 1 row, filtered by name equal to Kyle. The result, name Kyle, there are 2
high schoolers with friends, the number of friends is 2.
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As shown, CYCLESQL fails to interpret the semantics of the
join conditions, generating the same explanation for both
queries, which leads to incorrect validation of the predicted
result. As a result, it is imperative to establish a more reliable
explanation generation process for CYCLESQL.

B. Qualitative Evaluation

The NL explanation introduced in CYCLESQL is designed
to rationalize the query result and hence provides meaningful
information to understand the overall NL2SQL translation. An
inherent query may be raised: Can the semantics expressed
in the NL explanation help users understand existing black-
box NL2SQL translation? Therefore, we further evaluate the
quality of explanations produced by CYCLESQL using a case
study and a user study on the database (named world_I) in
SPIDER benchmark to answer the question.

Note that in order to enhance the fluency of NL explanations
for users, we choose to use a “polishing model” to help
refine the explanations further. Despite many studies on text
deliberation [69], [70], it is noteworthy that recent emergent
LLMs have showcased superior text deliberation capabilities
[71], [72]. Hence, we simply use the 5-shot prompted GPT-
3.5-TURBO LLM (with simple human-written instructions) as
the “polishing model” to enhance the NL explanations and use
the refined explanations for the subsequent evaluations.

1) Case Study.: The world_I dataset is an SQLite database
provided by SPIDER. It provides an overview of the global
city and country data, facilitating queries on various aspects of
worldwide demographics and linguistic diversity. The database
contains 4 relational tables and about 5000 data rows.
Setup. Since the SPIDER benchmark includes 120 NL-SQL
pairs for the world_1I database, we selected five queries from
the benchmark for this evaluation. To show NL explanations
generated by CYCLESQL for different types of queries, we
simply cluster the pairs based on the structures of SQL queries
and randomly choose five query pairs from each cluster.
Table IV shows the NL queries, executed SQL queries, to-
explained query results, and the NL explanations returned by
CYCLESQL for these selected queries.

Analysis. We analyze each example as follows:

e (1: This question inquires about the total number of spo-
ken languages in the country Aruba. The explanation first
describes the result set and then explains that for the country,
Aruba, the total number of its spoken languages is 4.

(22: Retrieve the continent name with the country Anguilla.
The NL explanation is simple and concise, which tells the
country Anguilla should belong to North America. Note that
for those simple queries, the NL explanation generated by
CYCLESQL may be similar to other explanation methods,
such as the SQL2NL method we introduced before.

Q@3: This NL query asks to find the nation name that satisfies
its condition of “speak both English and French”. While
the underlying executed SQL query is complex, involving
an INTERSECT set operation that combines two queries, the
NL explanation is straightforward and precisely elucidates
why Seychelles is one of the query results.

39

e (Q4: The negation question asks for European cities that
do not use English as their official language. Although the
NL explanation initially presents the filtering conditions
somewhat incoherently, it summarizes that 753 countries
meet these criteria. Following this, the explanation specifies
that the city Nabereznyje TSelny is located in Europe and
fails to meet the language and official criteria. Despite the
obscurity surrounding the “English” filtering condition in
the NL explanation, it still offers valuable insights to help
users comprehend the query result.

Q@s5: The question aims to identify countries with at least 3
spoken languages. The explanation centers on the result of
the country Iraq. It first provides an overall total number
of the countries that speak two or more languages (i.e.,
149 countries). Then, the explanation shifts its focus to the
country Iraq, stating that Iraq speaks 5 languages in total.

2) User Study.: Next, we report a user study to assess the
quality of the explanations generated by CYCLESQL for the
five queries selected from the world_I database. We focus
on addressing the main inquiry: whether CYCLESQL provides
meaningful explanations for users to understand query results,
hence the underlying translations.

Participants and Tasks. We enlisted the participation of
20 computer science students who have prior knowledge of
SQL or have taken graduate-level database courses to join
the assessment procedure. Initially, participants were briefed
about the background of the study and showed the schema of
the database. We then provided an exemplary query with a
“perfect” explanation (human-written) to illustrate the evalu-
ation process. Participants were then tasked to assign scores,
ranging from 1 to 10, to each explanation for every query.
The explanations were provided either by CYCLESQL or
the simpler method with GPT-3.5-TURBO as we described
in Section V-A4. Participants are mainly considered in two
aspects (refer to Table 10a) and provided an overall rating. To
simplify the analysis, we computed average scores for each
query and also summarized the results (in the form of &, =,
and &). Here, # denotes “great” for scores ranging from 7 to
10, "= denotes “neutral” representing scores ranging from 3 to
7, and & denotes “bad” for scores between 0 and 3. Fig. 10
shows the results for this user study.

Results and Analysis. The feedback is positive for CycC-
LESQL: 14 out of 20 participants agreed that the explanations
generated by CYCLESQL are more comprehensible to them
compared with the ones from GPT-3.5-TURBO. Moreover, the
average rating scores consistently surpass those of GPT-3.5-
TURBO, as illustrated in Fig. 10b. More importantly, partici-
pants confirmed that examining these explanations can greatly
assist them in understanding the reasons behind the query
results and may enable them to detect potential translation
errors that happened with the underlying NL2SQL process.
Discussion. While CYCLESQL provides an autonomous feed-
back loop in its current form, the findings suggest that the
NL explanation can also serve as feedback for humans when
interacting with NLIDBs, facilitating real-time adaptions based
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TABLE IV: NL queries, SQLs, to-explained results, and corresponding NL explanations produced by CYCLESQL.

Natural L

To- Natural L E;

e Queries Executed SQL Queries

plained Query Results

SELECT count (T2.Language)

The query output is a resuli set with one column and one

WHERE T2.language = 'French'

Qi Whaf is thg total nurnber of FROM Country AS T1 JOIN Countrylanguage AS T2 count(T2.language) row, filtered by country name Amba._ In this .vpeczﬁv result,
languages used in Aruba? - | country Aruba, whose country code is ABW, has four
WHERE Tl.name = 'Aruba .
spoken languages. So the count of languages is 4.
Qu: What is the continent name reoniines The query returns a result set with one column and one row,
2 . . ¢ SELECT continent FROM Country WHERE name = 'Anguilla’ - filtered by country name Anguilla. Here, country Anguilla,
that Anguilla belongs to? North America N > N
belongs to the continent North America.
SELECT Tl.name FROM Country AS T1
JOIN Countrylanguage AS T2 ON Tl.code = T2.countrycode The query output is a result set with one column and 6 rows,
Q3: What are the names of nations | WHERE T2.language = 'English' INTERSECT filtered by language English or French. Among them, for
speak both English and French? SELECT Tl.name FROM Country AS T1 Seychelles example, country Seychelles, where its country languages

JOIN Countrylanguage AS T2 ON Tl.code = T2.countrycode

include English and French.

SELECT DISTINCT T2.name FROM Country AS T1
JOIN City AS T2 ON Tl.code = T2.countrycode
WHERE T1.Continent 'Europe' AND

SELECT T3.name FROM Country AS T3

Qa: Which cities are in European
countries where English is not
the official language?

WHERE T4.isofficial = 'T'

AND T4.language =

T1l.Name NOT IN

JOIN Countrylanguage AS T4 ON T3.code = T4.countrycode
'English')

(

The query output is a result set with one column comprising
753 rows, filtered by continent Europe and excludes entries
that official is not T and language is English. In this specific
result, for example, the city Nabereznyje Tselny in the
Russian Federation, situated in Europe and not meeting the
specified language and official status criteria.

T2.name
Nabereznyje TSelny

Qs: Return the country name and
the numbers of languages spoken
for each country that speaks at

SELECT count (T2.language), Tl.name FROM Country AS T1
JOIN Countrylanguage AS T2 ON Tl.code = T2.countrycode

The query result has two columns with 149 rows, filtered by

count(T2. country greater than 2. Among these results, 149

| Tlname |
Iraq ‘ entries have 2 more languages, and for the specific example

least 3 1 GROUP BY Tl.name HAVING count (x) > 2 provided, the country Iraq has 5 spoken I
(a) Summarized resul}ts OsnsNL explanations bCy USCIS. in aggregate query results, which present explanations as com-

Dimension o QP: ) @;TUEO 0101 Qs YC5§5054 0,  pact summaries of relevant tuples. Conversely, [51], [82] delve

Query result interpretability | = B B @ @ | B B B 2 = into explanations for outliers beyond provenance, exploring

Textual entailment wih NL_| % % % - = | » % » = »  learning patterns or augmenting provenance.

Overall Ratings - 2209 22 RECH Explanations for returned tuples have been studied in [33],
w10 ‘ ‘ - [34], with an emphagis on formu!ating the provenance of
ssl % El % é | output tuples in NL, either in factorized or summarized form.
26l ? % i We align with their motivations in considering explanations in
g4 é 6 . NL, but step further to utilize these explanations back to the
:% 21 | | | | | — NL2SQL translation process, the?eby provid.ing self-generated

O 0, 0s 0 0- feedback to enhance the underlying translation accuracy.

(b) Average ratings with white boxes indicating ratings for explana-
tions by GPT-3.5-TURBO and gray boxes for CYCLESQL.

Fig. 10: User study results

on human inputs. In future work, we intend to further explore
the human feedback loop in the context of NL2SQL.

VI. RELATED WORK

Natural Language Interface for Database. NLIDBs have
been studied both in database management and NLP com-
munities. Many machine learning-based approaches treat the
NL2SQL problem as a Seq2seq translation task and leverage
the encoder-decoder architecture to do the translation [6], [7],
[11]-[15], [17], [67], [73]-[77]. With the excellent perfor-
mance of LLMs in various NLP tasks, recent works have
explored applying LLMs to the NL2SQL task [19], [20], [40],
[41], [78], [79], mostly in an end-to-end manner.

Instead of generating the target queries end-to-end, CYC-
LESQL aims to create a feedback loop within the translation
process, enabling the potential to find a better SQL outcome.
Explanations for Query Answers. This line of research
aims to explain query outcomes, including missing tuples,
outlier values, or returned tuples. Provenance provides a direct
method of explanation by characterizing a set of tuples con-
tributing to the target query answer [33], [34], [50], [51], [80]-
[82]. Prior works [80], [81] have explored both “why” and
“why-not” questions through query-based explanation methods
that make changes to queries. The frameworks proposed by
[83]-[85] address explanations for outlier values, particularly
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VII. CONCLUSION & FUTURE WORK

In this paper, we proposed an iterative framework named
CYCLESQL for end-to-end models to autonomously generate
the best output using NL explanations. CYCLESQL initials
by tracking data provenance and query semantics for a given
query result to generate an NL explanation. The explanation is
then used to validate the correctness of the underlying trans-
lation, ultimately resulting in a better translation outcome. We
conducted extensive experiments on five benchmarks, showing
that CYCLESQL consistently improves translation performance
across seven models. Additional case and user studies provided
further insights into the quality of the generated explanations.

While CYCLESQL has proven effective, further efforts are
needed to enhance its capabilities. One potential area of
investigation is how to close the feedback loop with human
involvement, enabling CYCLESQL to better align with humans
and adapt its translation over time. In addition, developing a
more reliable way to assist data tracking in CYCLESQL is
critical for CYCLESQL, especially in better supporting empty-
result queries. Finally, an intended future research direction
involves exploring an effective way to incorporate fine-grained
semantics both in NL queries and explanations during the
training of the NLI model, thereby enhancing its resilience
in managing comparable translations.
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