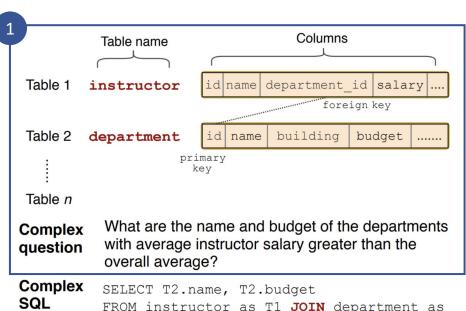


41st IEEE International Conference on Data Engineering

ONIV.


— HONG KONG SAR, CHINA | MAY 19 – 23, 2025 —

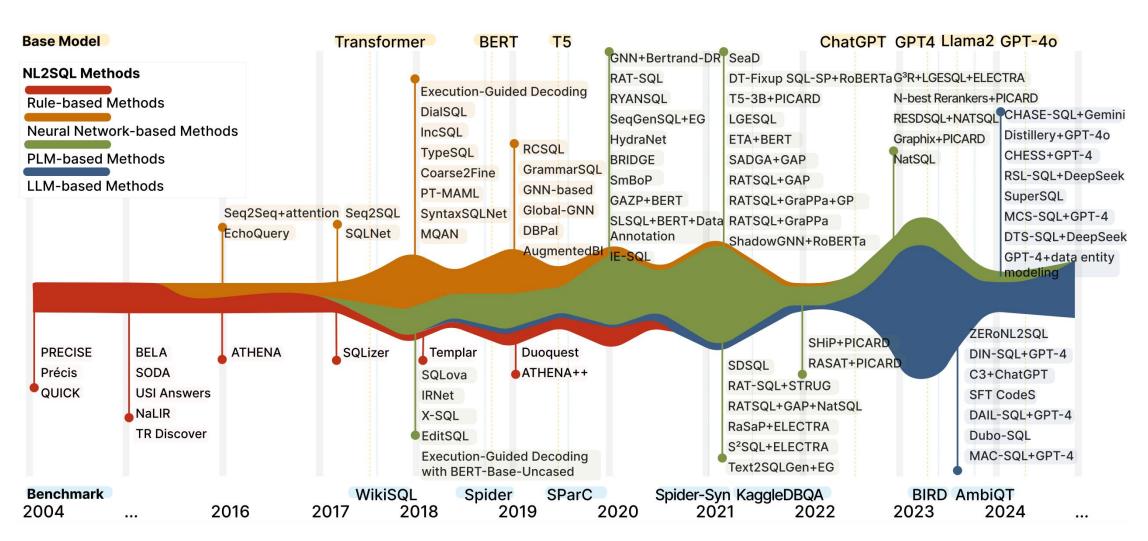
Grounding Natural Language to SQL Translation with Data-Based Self-Explanations

Yuankai Fan, Tonghui Ren, Can Huang, Zhenying He, X.Sean Wang

Natural Language to SQL (NL2SQL)

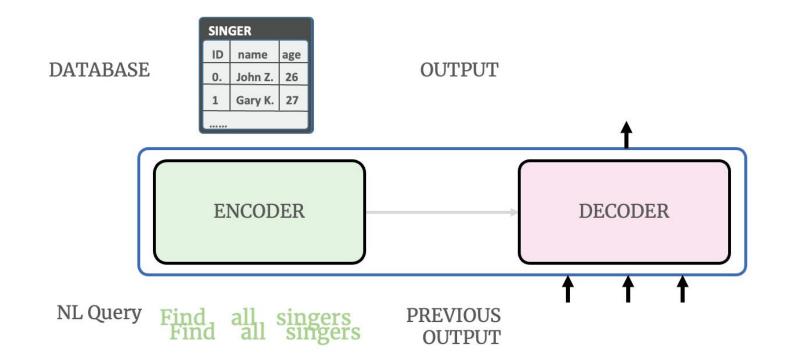
- Writing SQLs to query databases is NOT easy for non-SQL-savvies
- Natural Language to SQL (NL2SQL) comes in rescue:
 - Given a natural language query and the database scheme
 - @ Generate the corresponding SQL query

Generated SQL

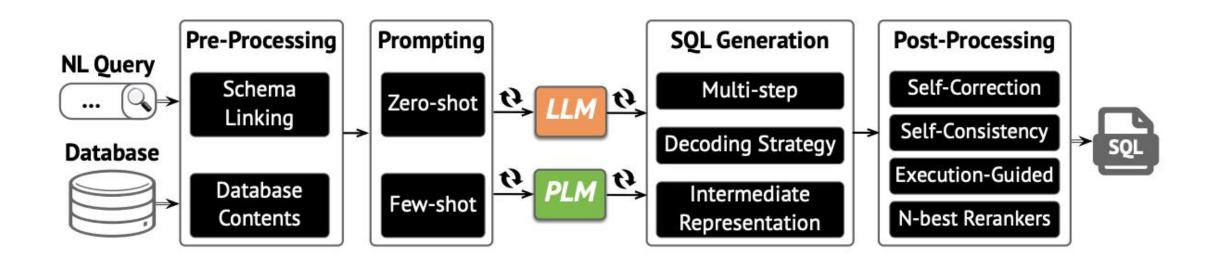

```
FROM instructor as T1 JOIN department as
T2 ON T1.department_id = T2.id

GROUP BY T1.department_id

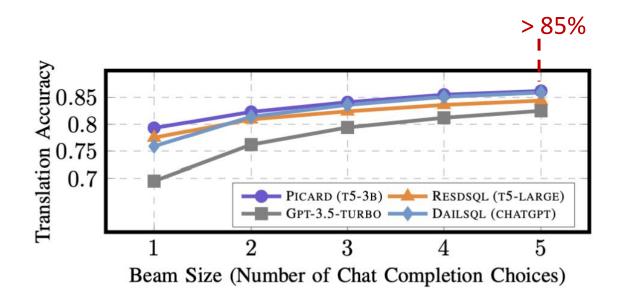
HAVING avg(T1.salary) >


(SELECT avg(salary) FROM instructor)
```

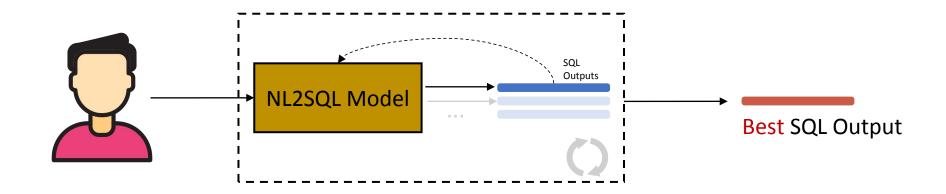
NL2SQL Evolution


Pre-LLM Era Approach - Seq2Seq

- Consider as machine translation problem
- Based on **Sequence-to-sequence** Encoder-Decoder framework

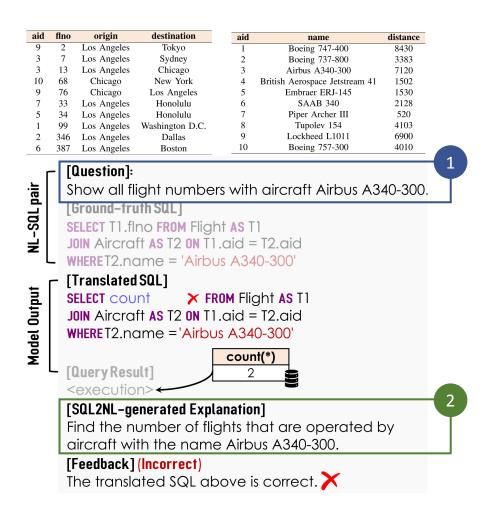

Post-LLM Era Approach — LLMs

- Build NL2SQL system with **LLMs**
 - Pre-processing
 - SQL Generation
 - Post-Processing

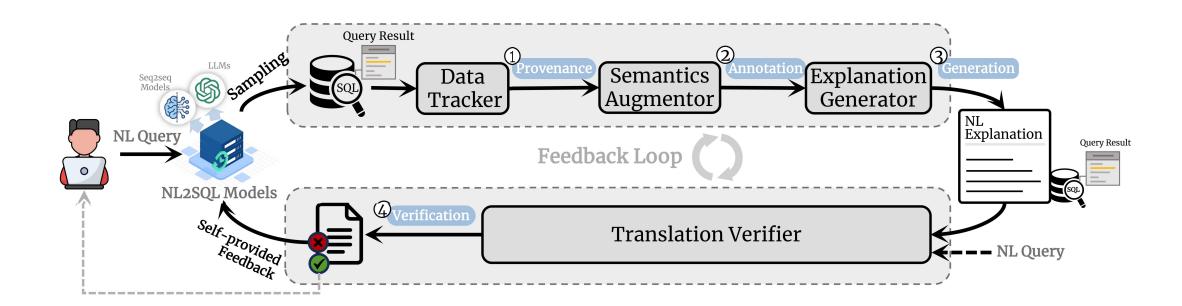

Unsatisfied Results

- Mainstream approaches (either Seq2seq models or LLMs) typically implement NL2SQL translation in an end-to-end fashion
- These models may benefit from broader exploration options over successive attempts

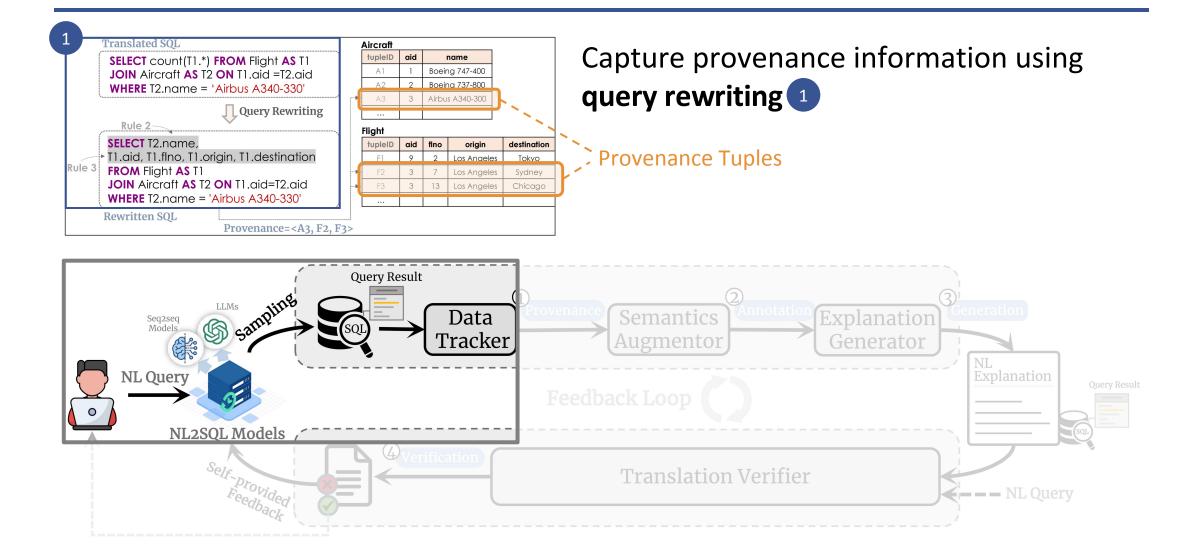
Idea: Feedback Loop in NL2SQL


■ Can we build a **self-provided feedback loop** along with NL2SQL, to improve end-to-end performance?

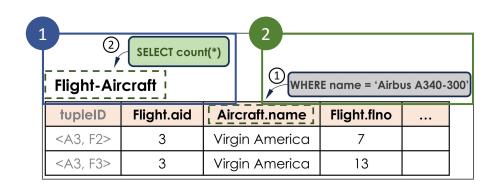
Is SQL2NL Back-Translation Sufficient?

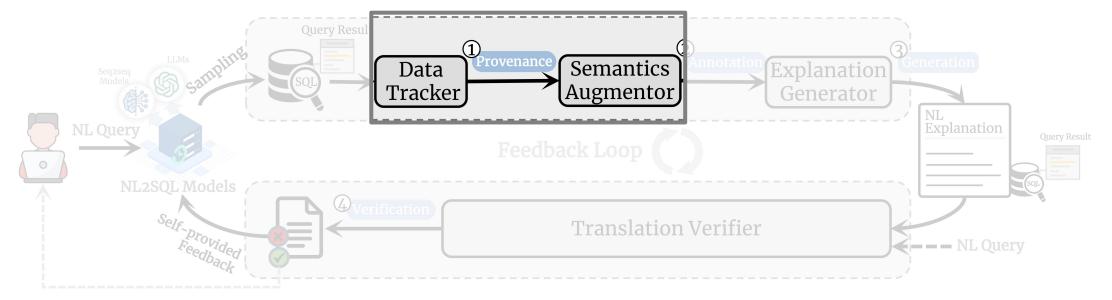

- Use **SQL2NL** to establish an **NL-to-SQL-to-NL** translation lifecycle?
- NOT reliable !!!

Fase Positive feedback for NL Question 1



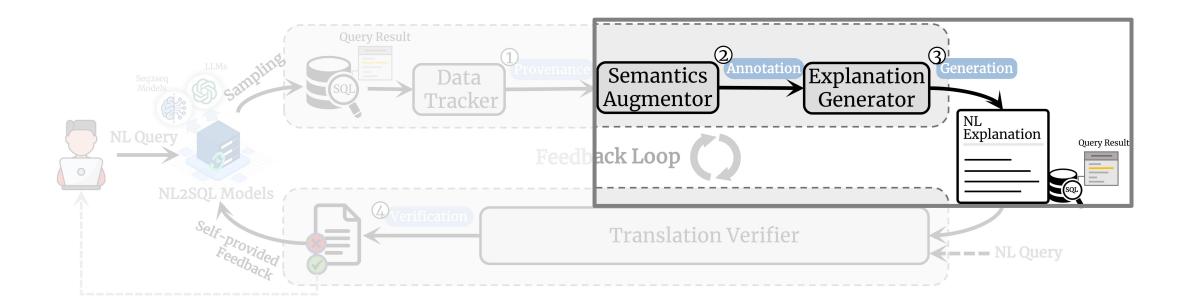
CycleSQL: Self-Provided Feedback in NL2SQL


- Data Provenance
- 2 Semantics Enrichment
- 3 Explanation Generation
- 4 Translation Verification


Data Provenance

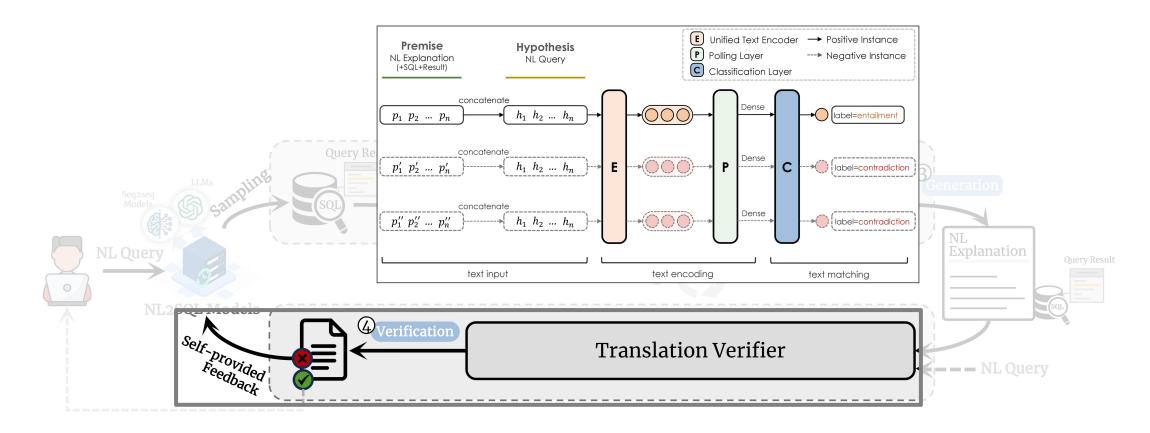
Semantics Enrichment

Integrate operation-level semantics 1 2 of the SQL queries to better reflect user query intent



NL Explanation Text Generation

Synthesize NL explanation baesd on a rule-based method


Synthesized Explanation Text Example:

The query returns a result with one column of aggregation type (count) and one row. For lights with aircraft, named Airbus A340-300, there are 2 flights in total.

NL2SQL Validation

- Formulate the translation validation problem as a **textual entailment task**
- Use textual entailment model to determine if the translation is correct or not

Experimental Settings

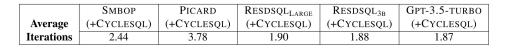
Benchmarks

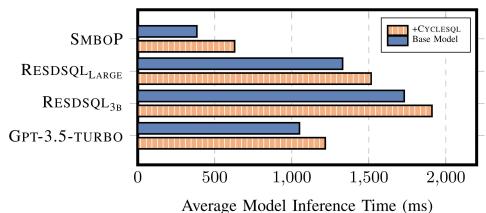
- Spider Spider and its variants (Spider-DK/Spider-Syn/Spider-Realistic)
- ScienceBenchmark

■ Baselines

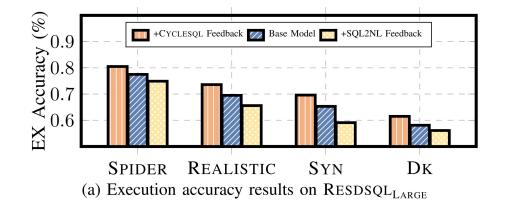
- Seq2seq-based: SmBoP/PICARD/RESDSQL
- **LLM-based**: GPT-3.5-Turbo/GPT-4/CHESS/DAILSQL

Metrics


- Syntactic Accuracy (EM): exact match the ground truth
- Execution Accuracy (EX): execution result match
- Test Suit Accuracy (TS): Similar to EX, but more robust


Overall Results

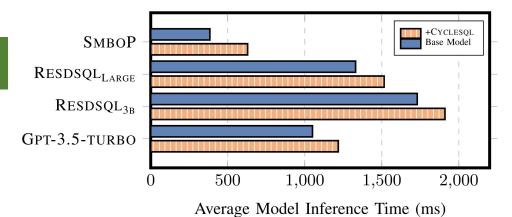
■ CycleSQL **consistently** improves over all base models

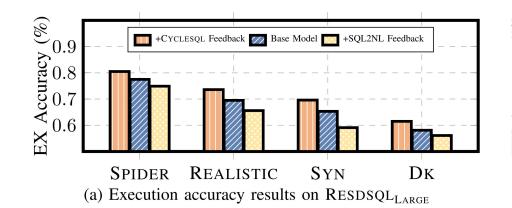

Models			(SPIDE					*	SPIDER		NTS			*SCIEN	CEBENCHM	IARK
		VA	LIDATI	ON	TE	EST	R	EALIST	IC		SYN		D	K	OncoMx	Cordis	SDSS
		EM	EX	TS	EM	EX	EM	EX	TS	EM	EX	TS	EM	EX	EX	EX	EX
						,	Seq2seq-	based N	/Iodels								
SMBOP	Base	74.5	77.8	72.5	69.5	71.1	60.2	61.4	56.1	60.2	64.9	58.3	54.0	59.1	16.2	16.0	7.0
SMBOP	+CYCLESQL	74.1	78.8	73.1	-	-	59.8	62.2	56.7	59.1	65.5	58.6	53.3	59.8	17.2	16.0	8.0
PICARD _{3B}	Base	75.9	79.3	72.8	72.4	75.1	68.9	71.7	64.6	65.6	69.8	63.2	49.7	63.2	32.3	26.0	8.0
I ICARD3B	+CYCLESQL	76.1	79.9	72.8	-	-	68.7	71.9	64.6	65.9	70.8	63.6	50.3	63.6	33.3	24.0	8.0
DECDCOL	Base	74.0	77.5	71.6	66.8	73.5	67.3	69.5	61.6	58.8	65.3	59.6	50.1	58.1	33.0	29.0	4.0
${f Resd SQL_{Large}}$	+CYCLESQL	75.1	80.5	74.0	68.9	77. 1	69.1	73.6	64.2	61.6	69.6	63.2	50.5	61.5	35.0	32.0	8.0
RESDSQL _{3B}	Base	76.0	79.4	73.5	70.2	78.4	68.9	72.2	64.8	62.9	69.5	63.2	52.0	59.3	34.1	28.0	6.0
KESDSQL3B	+CYCLESQL	76.8	82.0	76.0	72.5	81.6	71.3	76.5	67.5	65.5	73.3	66.6	52.5	61.3	37.4	31.0	8.0
							LLM-b	ased Mo	odels								
GPT-3.5-TURBO	Base	43.8	72.8	61.7	44.7	69.4	39.4	65.4	52.8	34.0	61.0	49.8	39.1	60.6	34.3	30.0	10.0
(5-SHOTS)	+CYCLESQL	49.2	77.8	66.2	50.6	75.1	46.5	71.1	56.7	40.0	66.7	55.4	43.7	65.6	43.4	34.0	12.0
GPT-4	Base	51.9	77.9	71.2	-	-	46.7	68.6	55.3	45.2	75.0	64.4	53.7	68.5	51.5	40.0	14.0
(5-SHOTS)	+CYCLESQL	58.7	79.8	73.1	-	-	49.0	70.6	56.9	46.2	76.0	66.3	57.4	68.5	56.6	43.0	15.0
Спесс	Base	23.4	41.1	37.5	-	-	21.2	39.7	36.6	17.4	37.0	32.5	19.5	35.6	64.6	46.0	40.0
CHESS	+CYCLESQL	25.6	42.3	38.2	-	-	23.1	41.1	37.9	19.3	38.1	33.0	20.2	36.1	65.7	52.0	40.0
DAILCOL	Base	65.1	81.3	74.1													
DAILSQL _{3.5}	+CYCLESQL	67.2	81.8	74.3													

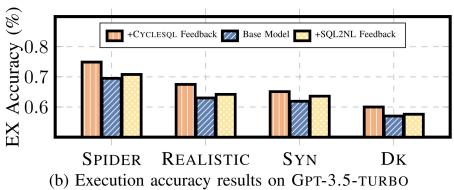
Mode	Model		Medium	Hard	Extra Hard
SMBOP	Base	90.7	82.7	70.7	52.4
SMDOF	+CYCLESQL	90.7	84.1 _($\uparrow 1.4$)	$69.5_{(\downarrow 1.2)}$	$53.0_{(\uparrow 0.6)}$
PICARD _{3B}	Base	95.6	85.4	67.8	50.6
I ICAKD3B	+CYCLESQL	95.6	$86.1_{(\uparrow 0.7)}$	$69.5_{(\uparrow 1.7)}$	50.6
DECDEOL	Base	92.3	83.4	66.1	51.2
$\mathbf{RESDSQL}_{\mathbf{LARGE}}$	+CYCLESQL	$93.5_{(\uparrow 1.2)}$	$86.1_{(\uparrow 0.7)}$	$73.0_{(\uparrow 6.9)}$	$53.6_{(\uparrow 2.4)}$
RESDSQL _{3B}	Base	94.0	85.7	65.5	55.4
KESDSQL _{3B}	+CYCLESQL	94.0	89.0 _(\uparrow3.3)	$74.7_{(\uparrow 9.2)}$	$53.0_{(\downarrow 0.4)}$
GPT-3.5-TURBO	Base	84.3	78.5	65.5	48.2
(5-SHOTS)	+CYCLESQL	$86.3_{(\uparrow 2.0)}$	$83.0_{(\uparrow 4.5)}$	$73.0_{(\uparrow 7.5)}$	$56.0_{(\uparrow 7.8)}$
GPT-4	Base	90.3	84.3	63.8	56.6
(5-SHOTS)	+CYCLESQL	$90.7_{(\uparrow 0.4)}$	$85.4_{(\uparrow 1.1)}$	$66.7_{(\uparrow 2.9)}$	$59.6_{(\uparrow 3.0)}$
CHESS	Base	70.2	25.3	39.7	19.3
CHESS	+CYCLESQL	$71.6_{(\uparrow 1.4)}$	$25.6_{(\uparrow 0.3)}$	$41.1_{(\uparrow 1.4)}$	$21.6_{(\uparrow 2.3)}$
DAILSQL _{3.5}	Base	91.1	86.5	77.0	57.2
DAILSQL3.5	+CYCLESQL	91.1	86.8 _(↑0.3)	$77.6_{(\uparrow 0.6)}$	59.0 _(↑1.8)

Average Woder Interence Time (ins)

SPIDER REALISTIC SYN DK

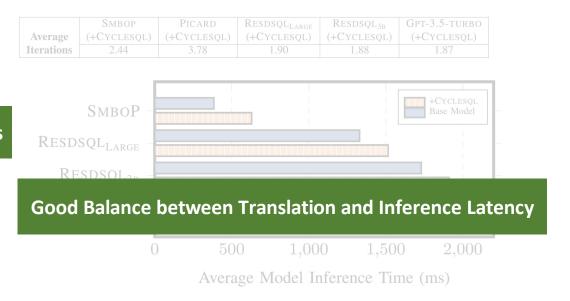

(b) Execution accuracy results on GPT-3.5-TURBO

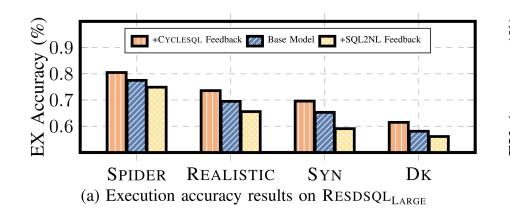

Mo	Model		Medium	Hard	Extra Hard
SMBoP	Base	90.7	82.7	70.7	52.4
SMDUP	+CYCLESQL	90.7	84.1 _($\uparrow 1.4$)	$69.5_{(\downarrow 1.2)}$	$53.0_{(\uparrow 0.6)}$
DICARD.	Base	95.6	85.4	67.8	50.6
PICARD _{3B}	+CYCLESQL	95.6	$86.1_{(\uparrow 0.7)}$	$69.5_{(\uparrow 1.7)}$	50.6
	Rase	923	83.4	66.1	51.2

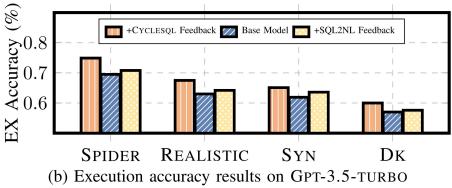

Significant Improvement over Extra-Hard-Queries on LLM Models

	D	0.4.2	70.5		40.2
GPT-3.5-TURBO	Base	84.3	78.5	65.5	48.2
(5-SHOTS)	+CYCLESQL	$86.3_{(\uparrow 2.0)}$	$83.0_{(\uparrow 4.5)}$	$73.0_{(\uparrow 7.5)}$	$56.0_{(\uparrow 7.8)}$
GPT-4	Base	90.3	84.3	63.8	56.6
(5-SHOTS)	+CYCLESQL	$90.7_{(\uparrow 0.4)}$	$85.4_{(\uparrow 1.1)}$	66.7 _(\uparrow2.9)	$59.6_{(\uparrow 3.0)}$
CHESS	Base	70.2	25.3	39.7	19.3
CHESS	+CYCLESQL	71.6 _(\uparrow1.4)	$25.6_{(\uparrow 0.3)}$	$41.1_{(\uparrow 1.4)}$	21.6 _(\uparrow2.3)
DAILSOL	Base	91.1	86.5	77.0	57.2
DAILSQL _{3.5}	+CYCLESQL	91.1	$86.8_{(\uparrow 0.3)}$	77.6 _(\uparrow0.6)	$59.0_{(\uparrow 1.8)}$

	Sмвор	Picard	RESDSQL _{LARGE}	Resdsql _{3B}	GPT-3.5-TURBO
Average	(+CYCLESQL)	(+CYCLESQL)	(+CYCLESQL)	(+CYCLESQL)	(+CYCLESQL)
Iterations	2.44	3.78	1.90	1.88	1.87

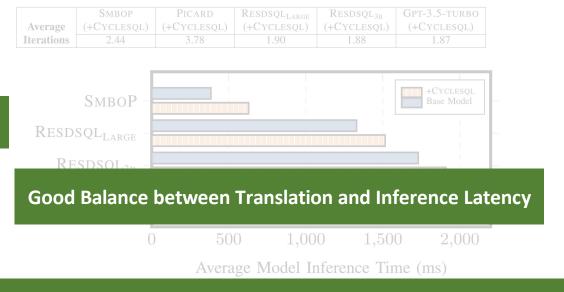


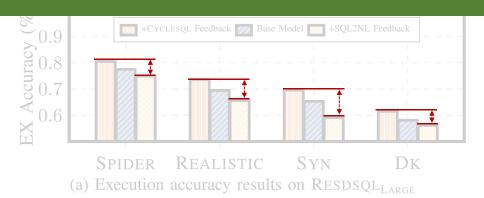



Mo	del	Easy	Medium	Hard	Extra Hard
SMBOP	Base	90.7	82.7	70.7	52.4
SMBOP	+CYCLESQL	90.7	84.1 _($\uparrow 1.4$)	$69.5_{(\downarrow 1.2)}$	$53.0_{(\uparrow 0.6)}$
Droupp	Base	95.6	85.4	67.8	50.6
PICARD _{3B}	+CYCLESQL	95.6	$86.1_{(\uparrow 0.7)}$	$69.5_{(\uparrow 1.7)}$	50.6
	Race	92.3	83.4	66.1	51.2

Significant Improvement over Extra-Hard-Queries on LLM Models

GPT-3.5-TURBO	Base	84.3	78.5	65.5	48.2
(5-SHOTS)	+CYCLESQL	$86.3_{(\uparrow 2.0)}$	$83.0_{(\uparrow 4.5)}$	$73.0_{(\uparrow 7.5)}$	$56.0_{(\uparrow 7.8)}$
GPT-4	Base	90.3	84.3	63.8	56.6
(5-SHOTS)	+CYCLESQL	$90.7_{(\uparrow 0.4)}$	$85.4_{(\uparrow 1.1)}$	$66.7_{(\uparrow 2.9)}$	$59.6_{(\uparrow 3.0)}$
CHESS	Base	70.2	25.3	39.7	19.3
CHESS	+CYCLESQL	71.6 _(\uparrow1.4)	$25.6_{(\uparrow 0.3)}$	$41.1_{(\uparrow 1.4)}$	$21.6_{(\uparrow 2.3)}$
DATI COL	Base	91.1	86.5	77.0	57.2
DAILSQL _{3.5}	+CYCLESQL	91.1	$86.8_{(\uparrow 0.3)}$	77.6 _(\uparrow0.6)	59.0 _(↑1.8)




Mo	del	Easy	Medium	Hard	Extra Hard
SMBOP	Base	90.7	82.7	70.7	52.4
SMBUP	+CYCLESQL	90.7	84.1 _($\uparrow 1.4$)	$69.5_{(\downarrow 1.2)}$	$53.0_{(\uparrow 0.6)}$
Dicipp	Base	95.6	85.4	67.8	50.6
PICARD _{3B}	+CYCLESQL	95.6	$86.1_{(\uparrow 0.7)}$	$69.5_{(\uparrow 1.7)}$	50.6
	Daga	02.2	92.4	66.1	51.2

Significant Improvement over Extra-Hard-Queries on LLM Models

GPT-3.5-TURBO	Base	84.3	78.5	65.5	48.2
(5-SHOTS)	+CYCLESQL	$86.3_{(\uparrow 2.0)}$	$83.0_{(\uparrow 4.5)}$	$73.0_{(\uparrow 7.5)}$	$56.0_{(\uparrow 7.8)}$
GPT-4	Base	90.3	84.3	63.8	56.6
(5-SHOTS)	+CYCLESQL	$90.7_{(\uparrow 0.4)}$	$85.4_{(\uparrow 1.1)}$	$66.7_{(\uparrow 2.9)}$	59.6 _(\uparrow3.0)
CHESS	Base	70.2	25.3	39.7	19.3
CHESS	+CYCLESQL	$71.6_{(\uparrow 1.4)}$	$25.6_{(\uparrow 0.3)}$	$41.1_{(\uparrow 1.4)}$	$21.6_{(\uparrow 2.3)}$
DAILSQL _{3.5}	Base	91.1	86.5	77.0	57.2
DAILSQL3.5	+CYCLESQL	91.1	$86.8_{(\uparrow 0.3)}$	$77.6_{(\uparrow 0.6)}$	59.0 (↑1.8)

CycleSQL Feedback is Better than SQL2NL Feedback!

SPIDER REALISTIC SYN DK (b) Execution accuracy results on GPT-3.5-TURBO

+CYCLESQL Feedback Base Model +SQL2NL Feedback

More Results in the Paper

- Comparison of different translation verifier selection
- Qualitative evaluation results

Conclusion

- Closing the feedback loop for NL2SQL brings good benefits
- Good feedback improves not only accuracy, but explanability

Yuankai Fan <kaimary1221@gmail.com>

https://github.com/Kaimary/CycleSQL