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Abstract—The Natural Language Interface to Databases
(NLIDB) empowers non-technical users with database access
through intuitive natural language (NL) interactions. Advanced
approaches, utilizing neural sequence-to-sequence models or
large-scale language models, typically employ auto-regressive de-
coding to generate unique SQL queries sequentially. While these
translation models have greatly improved the overall translation
accuracy, surpassing 70% on NLIDB benchmarks, the use of
auto-regressive decoding to generate single SQL queries may
result in sub-optimal outputs, potentially leading to erroneous
translations. In this paper, we propose METASQL, a unified
generate-then-rank framework that can be flexibly incorporated
with existing NLIDBs to consistently improve their translation
accuracy. METASQL introduces query metadata to control the
generation of better SQL query candidates and uses learning-to-
rank algorithms to retrieve globally optimized queries. Specif-
ically, METASQL first breaks down the meaning of the given
NL query into a set of possible query metadata, representing
the basic concepts of the semantics. These metadata are then
used as language constraints to steer the underlying translation
model toward generating a set of candidate SQL queries. Finally,
METASQL ranks the candidates to identify the best matching one
for the given NL query. Extensive experiments are performed to
study METASQL on two public NLIDB benchmarks. The results
show that the performance of the translation models can be
effectively improved using METASQL. In particular, applying
METASQL to the published LGESQL model obtains a translation
accuracy of 77.4% on the validation set and 72.3% on the test
set of the SPIDER benchmark, outperforming the baseline by
2.3% and 0.3%, respectively. Moreover, applying METASQL to
GPT-4 achieves translation accuracies of 68.6%, 42.0%, and
17.6% on the three real-world complex scientific databases of
SCIENCEBENCHMARK, respectively. The code for METASQL is
available at https://github.com/Kaimary/MetaSQL.

Index Terms—NLIDB, NL2SQL, SQL, learning-to-rank

I. INTRODUCTION

Making databases accessible is as important as the per-

formance and functionality of databases. Many techniques,

such as natural language (NL) interfaces, have been developed

to enhance the ease of use of databases in the last few

decades [1]–[3]. These NL interfaces democratize database

access for ordinary users who may not be proficient in query

languages (e.g., SQL). As a result, the construction of natural

language interfaces to databases (NLIDB) has garnered exten-

sive attention from the data management and natural language

processing (NLP) communities.

*Corresponding author.

countryCode language isOfficial percentage
ABW Dutch T 5.3

ABW English F 9.5

ABW Papiamento F 76.7

ABW Spanish F 7.4

AFG Balochi F 0.9

AFG Dari T 32.1

AFG Pashto T 52.4

AFG Turkmenian F 1.9

AFG Uzbek F 8.8

BMU English T 100.0

...

code name continent population
ABW Aruba North America 103000

AFG Afghanistan Asia 22720000

AIA Anguilla North America 8000

BMU Bermuda North America 65000

CHE Switzerland Europe 7160400

CMR Cameroon Africa 15085000

COL Columbia South America 42321000

GEO Georgia Asia 4968000

GRC Greece Europe 10545700

ISR Israel Asia 6217000

...

(a) A simplify database: CountryLanguage (left) and Country (right) tables.
NL Query: What are the country codes for countries that do not speak English?

SQL (Gold): SELECT countrycode FROM CountryLanguage EXCEPT
SELECT countrycode FROM CountryLanguage WHERE language='English'

Beam search outputs from LGESQL model [11]

Top-1 SQL: SELECT countrycode FROM CountryLanguage WHERE language!='value'
Top-2 SQL: SELECT code FROM CountryLanguage JOIN Country WHERE language!='value'
Top-3 SQL: SELECT countrycode FROM CountryLanguage WHERE language<='value'
Top-4 SQL: SELECT code FROM CountryLanguage JOIN Country WHERE surfacearea!='value'
Top-5 SQL: SELECT code FROM CountryLanguage JOIN Country WHERE countrycode!='value'

(b) An NL-SQL pair and the corresponding translation results of an
NLIDB model, with the duplicated parts highlighted in bold.

Fig. 1: An example from the SPIDER benchmark

Prior works have explored machine-learning methods that

employ either neural sequence-to-sequence (Seq2seq) models

[4]–[12] or large-scale language models (LLMs) [13]–[15] to

generate distinct SQL outputs via auto-regressive decoding.

However, despite achieving notable gains in translation ac-

curacy, unsatisfactory performance of these approaches was

observed in the overall improvement. For example, the state-

of-the-art model on top of the widely used SPIDER [16] bench-

mark1 attains only 74.0% accuracy in syntactic equivalence

translation on the test set at the time of writing2.

One plausible reason we believe is that using standard auto-

regressive decoding to generate single SQL queries may result

in sub-optimal outputs in two main aspects: (1) Lack of
output diversity. Auto-regressive decoding, commonly used

with beam search or sampling methods such as top-K sampling

[17], often struggles with generating a diverse set of candidate

sequences and tends to exhibit repetitiveness in its outputs

[18]–[20]. Consider the example in Fig. 1 that shows an

NL query with the corresponding translation results of the

translation model LGESQL [11]. While LGESQL model using

1Refer to the leaderboard https://yale-lily.github.io/spider. Note that SPIDER

uses unknown testing queries and databases to evaluate NLIDB algorithms.
2SPIDER provides two separate leaderboards to assess NLIDB algorithms,

one for syntactic equivalence accuracy and the other for execution equivalence
accuracy. This paper primarily focuses on the former, given that most existing
Seq2seq-based translation models do not predict specific values in SQL
queries, which makes the latter evaluation unsuitable for them.
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beam search maintains a list of top-K best candidates, these

outputs are near-duplicates with minor variations, resulting in

the final incorrect translation3. (2) Lack of global context
awareness. Due to the incremental nature of generating output

tokens one by one based on the previously generated tokens,

auto-regressive decoding may lead to local optima outputs as

it considers only partial context [21]–[23], thereby causing a

failure to find the correct translation as well.
To improve the existing end-to-end translation paradigm, a

multi-task generation framework [24] targeting the conversa-

tional translation scenario is introduced to improve existing

translation models. Although the approach achieves state-of-

the-art performance on conversational benchmarks, the frame-

work still relies on the standard auto-regressive decoding

procedure to obtain the final results, which may not be optimal.

Another recent work [25], [26] proposes a generative approach

for the NL2SQL problem, but it requires a hypothesis based

on a set of representative sample queries.
In this paper, we present METASQL, a novel approach

aimed at enhancing the auto-regressive decoding process in

NL2SQL translation. Drawing inspiration from controllable
text generation techniques [27], [28] in NLP, METASQL in-

corporates control signals [29], either explicitly or implicitly,

into the standard auto-regressive decoding process, thereby

facilitating more targeted SQL generation. To tackle the

problem of insufficient output diversity, METASQL introduces

query metadata as an explicit control signal to manipulate

the behavior of translation models for better SQL query

candidate generation. Additionally, to overcome the lack of

global context, METASQL reframes the NL2SQL problem as

a post-processing ranking procedure (as an implicit control
signal), leveraging the entire global context rather than partial

information involved in sequence generation. Here, the query

metadata we mean represents a set of semantic units of a SQL

query that serve as generation constraints for constructing the

complete SQL query under a specific database. (More details

can be found in Section III-A1.)
Concretely speaking, METASQL introduces a unified

generate-then-rank framework that is compatible with any

existing Seq2seq-based and LLM-based NL2SQL models to

enhance their translation accuracy. Motivated by the recent

achievements of task decomposition [30]–[34] and diverse

decoding [18]–[20] techniques, METASQL incorporates query

metadata to upgrade the end-to-end sequence generation

paradigm as follows. 1 To understand the given NL query,

METASQL first maps the meaning of the NL query into a

small set of related query metadata; 2 Next, by manipulating

the Seq2seq translation model behavior, METASQL generates

a diverse collection of candidate SQL queries by conditioning

on different compositions of the retrieved query metadata; 3

Finally, METASQL implements a two-stage ranking pipeline

to find the best-matching SQL query as the translation result.

Here, since the ranking pipeline has global information about

3Given that a country may have multiple languages spoken, the top-1
translated SQL is considered as incorrect translation, as the country “Aruba”
may be mistakenly selected for the given scenario.

what the target SQL query to be generated might be, we posit
that it has the potential to do a better translation than the
traditional left-to-right fashion generation.

To assess the efficiency of METASQL, we conduct our ex-

periments on two public NLIDB benchmarks, namely SPIDER

and SCIENCEBENCHMARK [35], by applying METASQL to

four Seq2seq models, BRIDGE [36], GAP [9], LGESQL, and

RESDSQL [12], along with two LLMs, GPT-3.5-TURBO (the

model used behind CHATGPT4) and GPT-4. Experimental

results reveal that METASQL consistently enhances the per-

formance of all models across two benchmarks, with LGESQL

achieving a translation accuracy of 77.4% on the validation

set and 72.3% on the test set of SPIDER, and GPT-4 attaining

translation accuracies of 68.6%, 42.0% and 17.6% on the three

scientific databases of SCIENCEBENCHMARK, respectively.

To summarize, our contributions are three-fold:

• We propose METASQL, a unified framework for the

NL2SQL problem, designed to enhance the performance of

existing Seq2seq-based and LLM-based translation models.

• METASQL formulates the NL2SQL task as a diverse gener-

ation and ranking problem by incorporating query metadata

to control the generation of better SQL query candidates and

utilizing learning-to-rank algorithms to achieve the ranking

procedure, thereby enhancing SQL query translation.

• We perform a series of experiments to evaluate METASQL

on two public NLIDB benchmarks with four state-of-the-

art Seq2seq-based translation models and two LLMs. The

experiments demonstrate the effectiveness of METASQL.

The remainder of this paper is organized as follows. We first

present the overview of METASQL in Section II; We then go

into the details of the methodologies in Section III. We report

the experimental results in Section IV. Finally, we discuss

related works in Section V and conclude in Section VI.

II. METASQL

We first give some essential preliminaries of METASQL and

then describe the overall of our approach.

A. Preliminaries

Auto-regressive Decoding refers to a decoding strategy where

a model generates output sequences one element at a time,

and the generation of each element depends on the previously

generated ones. Decoding in auto-regressive models involves

learning a scoring model p(y|x) that decomposes based on

left-to-right factorization,

log(y|x) =
m−1∑

j=0

logp(yj+1|y≤j , x)

where the objective is to find a high-scoring output sequence

y = (y1, · · · , ym) given an input sequence x = (x1, · · · , xn).

It’s worth noting that standard uni-directional decoding al-

gorithms, like greedy and beam search, are ineffective in

producing high-scoring output sequences. This inefficiency

4https://chat.openai.com
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Fig. 2: Overview of METASQL

arises because errors in the decoding history can have adverse

effects on future outcomes. These algorithms rely on making

local decisions to extend an incomplete sequence by selecting

the token with the maximum likelihood at each time step,

hoping to achieve a globally optimal complete sequence [37].

NL2SQL Models convert human-readable NL queries into

executable SQL queries, which mainly fall into two categories:

Seq2seq-based NL2SQL Models. A Seq2seq-based NL2SQL

translation model commonly follows the Seq2seq learning

framework [38] to translate NL queries to their SQL coun-

terparts. Given an input NL query X = {x1, x2, · · · , xn}
and a database schema S = 〈C, T ,F〉 that consists of

columns C = {c1, c2, · · · , c|C|}, tables T = {t1, t2, · · · , t|T |},

and a set of foreign-primary key pairs F = {(cf1 ,
cp1

), (cf2 , cp2
), · · · , (cf|C| , cp|C|)}, the model uses an encoder

to compute a contextual representation c by jointly embedding

the NL query X with schema S. Afterward, an auto-regressive

decoder is used to compute a distribution P (Y | c) over the

SQL programs Y = (y1, · · · , ym). Depending on different

model designs, the learning target Y of the decoder can be raw

SQL tokens [36], [39], intermediate representations of SQL

language [5], [40], or SQL abstract syntax trees [8], [9], [11].

LLMs as NL2SQL Models. In light of the recent advancements

in LLMs, current research [41], [42] endeavors to employ

LLMs as NL2SQL models without fine-tuning. By providing

an NL query X and a prompt P as input, an LLM can

be utilized to auto-regressively generate the corresponding

SQL query Y , akin to the decoding process of Seq2seq-based

translation models. Depending on the prompting technique

utilized, such as zero-shot, few-shot prompting, or in-context

learning, the prompt P can include text instructions [42],

translation demonstrations [15] or reasoning chains [14], [43].

B. Overview

A high-level view of METASQL can be seen in Fig. 2. The

main process is as follows:

1) NL query semantic parsing is reformulated as a classifi-

cation problem, where the NL semantics are mapped to a

set of related query metadata using a multi-label classifier.

2) (Optional) An underlying translation model is supervised-

trained on augmented NL-SQL data with additional meta-

data added to the NL part.

3) Conditioned on different compositions of the related

query metadata for the given NL query, a set of diverse

candidate SQL queries is then generated by using the

translation model.

4) A two-stage ranking pipeline is applied to get a global-

optimal SQL query as the translation result based on the

semantic similarity with the given NL query.

Among these, the metadata-conditioned generation followed

by ranking is unique to our setup, and we found that this

process is the key to improving translation accuracy. We

describe each above step below.
Semantic Decomposition. This step in Fig. 2- 1 is to decom-

pose the meaning of the given NL query and map it to a set of

query metadata. This is accomplished by treating the semantic

decomposition task as a classification problem and using a

multi-label classifier to select all relevant query metadata for

the given NL query. Here, the query metadata is represented

as a set of categorical labels that capture the context expressed

by the NL query in relation to the underlying database. For

example, suppose the NL query in Fig. 1b is given. In that

case, METASQL should select “project” and “except” query

operator labels, along with a hardness value “400” indicating

the SQL query’s anticipated difficulty level as corresponding

metadata. (A detailed definition can be found in Section III-A.)
Metadata-conditioned Generation. This step in Fig. 2- 2

is to employ the base translation model to produce a list of

candidate SQL queries for the given NL query. METASQL

achieves this by manipulating the behavior of the translation

model to generate a collection of SQL queries by conditioning

on different compositions of the retrieved metadata from the

last step. Continuing the running example in Fig. 1, the

following SQL query is one of the candidate queries that

may be generated by the translation model conditioned on the

“where” label with a rating value “200”:

SELECT countrycode FROM CountryLanguage

WHERE language!='English'
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Note that in order to use the query metadata for translation

assistance, the conventional supervised learning process of

Seq2seq translation models requires enhancement through the

inclusion of the metadata into the model input. However,

since LLMs can serve as NL2SQL models effectively without

requiring fine-tuning, the training procedure is not required.

Two-stage Ranking Pipeline. This step in Fig. 2- 3 is to

utilize a ranking procedure to determine which candidate SQL

query is the correct translation to a given NL query. Inspired

by the recent success of the multiple-stage ranking paradigm

in information retrieval [44], [45], METASQL utilizes a two-

stage ranking pipeline. In this pipeline, the initial ranking stage

produces a set of more relevant candidates for the second-

stage ranking model to identify the top-ranked query. Here,

the ranking models learn to rank the semantic similarity across

two modalities (i.e., NL and SQL). For example, for the given

NL query in Fig. 1b, the ranking pipeline recognizes the below

ground-truth SQL query as the most similar query for the given

NL query and hence the translation result.

SELECT countrycode FROM CountryLanguage

EXCEPT SELECT countrycode FROM
CountryLanguage WHERE language='English'

The training data of the ranking models are composed of

a set of triples {(qi, si, yi)|qi ∈ Q, si ∈ S, 0 ≤ yi ≤ 10}Ni=1,

where qi represents an NL query, si denotes a SQL query, and

yi represents the semantic similarity score between si and qi,
such that the more similar si and qi are, the closer the score

yi is to 10. In this paper, the semantic similarity score yi is set

to 10 if si is exactly the “gold” SQL query of qi. Otherwise,

yi is calculated by comparing each clause of si with the given

“gold” SQL query for qi.

III. METHODOLOGIES

In this section, we first elaborate on the query metadata de-

sign, then describe in detail the metadata selection, metadata-

conditioned generation, and two-stage ranking of METASQL.

A. Query metadata

1) Metadata Design: We design the query metadata to

be expressive enough to represent the high-level semantics

that the query (NL and SQL counterpart) may express. In

METASQL, we introduce the following three types of metadata

- operator tag, hardness value and correctness indicator.

• Operator Tag. Each operator tag corresponds to a single

logical operator, where each operator either selects a set

of entities, retrieves information about their attributes, or

aggregates information over entities. Note that since the

operators are primarily inspired by SQL, this kind of meta-

data indicates which SQL components should be used for

translating the given NL query.

For example, as for the NL query in Fig. 1, the query should

correspond to “project” and “except” operator tags.

• Hardness Value. Hardness value serves as a metric to

quantify the potential complexity of a query. This definition

draws from the SQL hardness criteria outlined in [16],

where query complexity is assessed based on the number

and type of SQL components present in a query. Taking an

additional step, we utilize the criteria to assign a difficulty

score to each SQL component (with a base value of 50),

reflecting its syntactic complexity. The hardness value for a

given query is then determined by summing the difficulty

scores of its individual SQL components.

In the example of Fig. 1, the hardness value of the query is

set to 400, according to the initial rating of 100 combined

with the “hard” EXCEPT clause rating of 300.

• Correctness Indicator. We use a correctness indicator to

distinguish correct queries from incorrect ones. Note that

this kind of metadata is always true in both the semantic

decomposition and metadata-conditioned generation steps at

the inference time of METASQL, but be changeable with

either “correct” or “incorrect” at training time for model

learning. More details about the usage of this kind of

metadata can be found in Section III-B.

2) Semantic Decomposition with Metadata: To retrieve

metadata from a given NL query, we frame the NL-to-metadata

mapping as a classification problem. Here, the metadata is

treated as a collection of categorical values, with each indi-

vidual metadata value representing a distinct class. We utilize

a multi-label classification model to implement this mapping.

Technically, the architecture of the multi-label classifier can

be derived from any underlying NL2SQL translation model,

in the sense that they share the same encoder, but the decoder

is replaced with a classification layer to output scalar values.

In this manner, the multi-label classification model benefits

from the encoding capacities maintained in the translation

model. More specifically, the classifier reuses the encoder

of a translation model to encode the NL query and the

corresponding database schema jointly. Then, the contextual

representation is then fed into a classification layer to calculate

the possibility mass over different categorical values of query

metadata. We set a classification threshold of p to select the

possible metadata labels with a higher probability mass over

all outputs at the inference stage.

By deconstructing the semantics of the given NL query

into its corresponding set of query metadata, METASQL can

capture more fine-grained semantics, allowing the discovery

of diverse semantic-equivalent SQL queries based on various

combinations of plausible query metadata.

B. Metadata-conditioned Generation

An essential question for METASQL is how the metadata in-

formation can be enforced in the sequence generation process

of the traditional Seq2seq-based translation models. METASQL

is primarily inspired by the prompting methods [46]–[48] and

takes it further by incorporating query metadata as additional

language prompts to enhance the sequence generation.

In the rest of this section, we first elaborate on how

METASQL trains Seq2seq-based NL2SQL models with query

metadata as additional language prompts and then explain

the metadata-conditioned generation process of these Seq2seq

NL2SQL models (and LLMs) during the inference stage.
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1) Training with Metadata: In model training, we add

query metadata as prefix language prompts to the NL queries

and follow the traditional seq2seq paradigm. The metadata

provides an additional learning signal, alleviating the burden

of parsing complex queries for the model.

Training Data. METASQL collects the training data for the

underlying NL2SQL model using the principle of weak super-

vision. Specifically, the training data of the translation model

is enforced as a set of triples {(qi, si,Mi)}Ni=1, where qi is an

NL query, si is the corresponding SQL query and Mi is the

query metadata associated with a given NL query. We collect

the query metadata Mi as follows: Firstly, for the operation

tag-type metadata, we directly examine the corresponding SQL

query si and get the relevant operation tags. Secondly, for

the hardness value-type metadata, we use the definition of

hardness used in the SPIDER [16] benchmark and assign scores

to each syntactical structure in an SQL query to calculate

the value. Lastly, we determine the correctness indicator-

type metadata based on the data types. Namely, if the data

originates from the public NLIDB benchmarks, we consider

it a positive sample; otherwise, we label it a negative sample.

Negative Samples. To allow Seq2seq translation models to

better differentiate between correct and incorrect target se-

quences (i.e., SQL queries), we gather the erroneous trans-

lations from existing translation models on the training set of

the SPIDER benchmark and use these translations as negative

samples to augment the training data. Hence, we assign the

“incorrect” correctness indicator as part of the query metadata

for these negative samples. By doing this, translation models

may intentionally circumvent the wrong parsing path by using

this type of metadata during the learning process.

���� CORRECT TRANSLATION

����	� 400

���
 project, except

fla
tte

n

CORRECT TRANSLATION | RATING: 400 | TAGS: project, except

NLIDB 
Benchmark

NL-SQL
Supervised Learning

Pairs
Seq2seq 
Model

Find the name of the employee who got the highest one time bonusMetadata Info

SQL
Query

What are the country codes for countries that do not speak English?

Fig. 3: Training procedure of Seq2seq-based models in METASQL.

Model Input. As illustrated in Fig. 3, the translation model

input comprises both the NL query and its associated query

metadata. To add query metadata as a prefix, we flatten the

metadata into a sequence and then concatenate it with the

given NL query. All metadata, including the hardness value,

is treated as a string. For example, a flattened query metadata

M for the NL query in Fig. 1b is represented below:

M = correct | rating : 400 | tags : project, except
Here | is a special token to separate different metadata. This

allows us to prefix the flattened metadata M with the NL query

q before feeding it into the encoder of the translation model.

2) Conditioned Generation.: As the query metadata is

unknown during inference time, METASQL utilizes the multi-

label classification model introduced in the previous Section

III-A2 to obtain the query metadata, thus diversifying plausible

translations by conditioning on the metadata.

More precisely, given an NL query, METASQL initially

employs the multi-label classifier to obtain an initial set

of metadata labels. To ensure the controlled sampling of

semantically relevant query metadata conditions, METASQL

selectively composes these labels by considering combinations

observed in the training data, assuming that the training and

test data share the same distribution. Using the resulting sam-

pled metadata conditions, METASQL manipulates the behavior

of the trained model and generates a set of candidate SQL

queries by conditioning each query metadata condition. This

approach is similar to the prompt-based methods used in LLMs

[13], [49] to generate textual responses to different given

prompts defined by specific downstream tasks.

For the NL query example in Fig. 1, we illustrate the

generation results of METASQL during the inference time, as

depicted in Fig. 4. Using metadata labels “400”, “project”,

“where”, and “except” obtained from the multi-label classifi-

cation model, we derive three distinct compositions of query

metadata and generate three distinct SQL queries based on

each query metadata, respectively5.

NL QUERY:
What are the country codes for 
countries that do not speak English?

N
W

SELECT countrycode
FROM CountryLanguage

SELECT countrycode
FROM CountryLanguage 
EXCEPT 

SELECT countrycode
FROM CountryLanguage 
WHERE language = ‘English’

SELECT countrycode
FROM CountryLanguage
WHERE language != ‘English’

…...
Multi-label 

Classifier

400

project

where
except

softmax

composition

METADATA
400, project

400, project, where

400, project, except

NL2SQL MODEL

CANDIDATE SQLS

Fig. 4: Metadata-conditioned generation in METASQL.

C. Two-stage Ranking Pipeline

METASQL implements a ranking pipeline with two separate

machine learning-based ranking models across two modalities

(i.e., NL and SQL). In the first stage, a coarse-grained ranking

model narrows the relatively large set to a relatively small

collection of potential candidates. Then, a second-stage fine-

grained ranking model is applied to the resulting set from the

first stage to get the final top-ranked SQL query.

1) First-stage Ranking Model: To fast retrieve a relatively

small set of candidate SQL queries, we employ the widely

used dual-tower architecture [50]–[52] in information retrieval

to construct the first-stage ranking model. Fig. 5a presents

the overall architecture of the first-stage ranking model.

Specifically, the network architecture includes two BERT-like

bidirectional text encoders [53] (i.e., an NL query encoder

EncQ and a SQL encoder EncS) and uses the cosine function

as the similarity function to measure the semantic similarity

between the NL query and the SQL query as follows:

sim(q, s) =
EncQ(q) · EncS(s)

‖ EncQ(q) ‖‖ EncS(s) ‖
(1)

5Note that each operator tag-type metadata indicates the presence of a
specific SQL operation without limiting the number of attributes used in it.
Hence, multiple projections-SQL can be generated in the given example.
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Fig. 5: Two-stage ranking models used in METASQL.

Training Data. The training data of the first-stage ranking

model is a set of triples {(qi, si, vi)}Ni=1, where qi is an NL

query, si is a SQL query and vi is the semantic similarity

score between qi and si. The score vi is determined as

follows: If si corresponds to the “gold” SQL query of qi,
then si is set to 1. Such a triple is called a positive sample,

which is obtainable from public benchmarks. Otherwise, vi is

calculated by comparing each clause in the SQL query si with

the corresponding “gold” SQL query for qi. If a clause differs,

a penalty is applied to the vi value. The calculation continues

until all the clauses are compared or vi drops to 0. Such a triple

is called a negative sample, which can be collected using the

trained Seq2seq-based translation model in Section III-B by

conditioning on different metadata.

2) Second-stage Ranking Model: The objective of the re-

ranking model is to accurately find the top-ranked SQL query

based on the semantic similarities with the given NL query

from the resulting set from the first-stage ranking model. Nev-

ertheless, we observe that most current ranking architectures,

like the one used in the first stage, primarily rely on sentence-
level supervision to distinguish matched and mismatched can-

didates, which is limited for a precise ranking purpose. Table

1 presents an example of the ranking results produced by the

first-stage ranking model. Mismatched sentences are usually

partially irrelevant with phrases of inconsistent semantics (the

missed WHERE pets.pettype='cat', the mismatched

JOIN pets, etc.). This example shows that the semantic

mismatch usually happens in finer grain, i.e., phrase level.

Motivated by this finding and the recent advancements in

image-text retrieval [54], [55], we explore providing multi-

grained supervision signals (i.e., incorporating both sentence-

TABLE 1: An example of an NL query, a group of mismatched SQL
queries, and the corresponding matched SQL query. Query segments
with underlines stand for mismatching at phrase level.

NL Query Find the last name of the student who has a cat that is age 3. Similarity Score
SELECT student.lname
FROM student JOIN has_pet JOIN pets
WHERE pets.pet_age=3 AND pets.pettype='cat'

0.76

Mismatched
SQL Queries

SELECT student.lname
FROM student JOIN has_pet JOIN pets

WHERE pets.pettype='cat' AND pets.pet_age=3
0.82

SELECT student.lname, pets.pettype

FROM student JOIN has_pet JOIN pets
WHERE pets.pet_age=3 AND pets.pettype='cat'

0.73

Matched
SQL Query

SELECT student.lname
FROM student JOIN has_pet JOIN pets
WHERE pets.pettype='cat' AND pets.pet_age=3

0.72

level and phrase-level supervision) in the second-stage ranking

model for better identification of mismatched components

in the SQL queries. Fig. 5b presents the architecture of

our proposed second-stage ranking model, which includes

two encoders (i.e., the upper coarse-grained encoder and

the lower fine-grained encoder) for multi-grained semantics

capture. Note that we employ the listwise approach [56] to

construct the second-stage ranking model. That is, the training

setting of the second-stage ranking model consists of a finite

dataset consisting of n triplets D = {qi, Si, Yi}Ni=1, where

Si = {si,1, si,2, · · · , si,L} is the list of SQL queries, and

Yi = {yi,1, yi,2, · · · , yi,L} are the corresponding relevance

similarity scores of Si.

Multi-Grained Feature Construction. To capture the se-

mantics of different granularities for a given SQL query, we

introduce additional phrase-level semantics from its original

form. Drawing inspiration from query translation studies [57]–

[59], we adopt a straightforward rule-based approach to

systematically generate an NL description for a specific SQL

unit. This involves linking each type of SQL unit with a pre-

determined template, then populated with element-based labels

extracted from the SQL unit to form the NL description. The

different types of SQL units used in METASQL are listed in

Table 2, and more details can be seen in [57].

TABLE 2: Query unit types and examples
Type Unit Example NL Description

PROJECTION SELECT employee.name Find the employee name.

JOIN
FROM employee Employee
FROM employee JOIN evaluation
ON id=employee id The employee with evaluation.

PREDICATE
WHERE employee.name='John' The employee named John.
INTERSECT SELECT id FROM
employee WHERE name='John'

(Find the ID of) the employee
named John

GROUP SELECT employee.name Find the employee name.

SORT

ORDER BY evaluation.bonus
desc LIMIT 1 The highest one time bonus.

Multi-scale Loss Construction. We compute matching scores

for NL-SQL pairs using three distinct loss functions: global,
local, and phrase loss. Omitting the triplet index, we denote

the similarity score vector as y ∈ R
L and the model’s score

vector obtained via the ranking network as ŷG ∈ R
L.

• NL-to-SQL Global Loss. The sentence-level representations

of NL and SQL queries measure a global (coarse-gained)

cross-modal matching similarity. The loss is shown below,
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LG
0 =

1

N

N∑

i=1

(ŷGi − yi)
2 (2)

where ŷG is the matching scores produced by the coarse-

grained encoder with the following dense layer. To align

with the listwise paradigm, we further extend the above loss

by using listwise NeuralNDCG loss function [60].

• NL-to-Phrase Local Loss. We utilize local loss based on NL-

to-phrase relationship modeling to enhance the fine-grained

cross-modal matching between NL and SQL counterparts.

The loss is formulated in the following equation,

LL
1 =

1

N

N∑

i=1

(

K∑

k=1

ŷLi,k − yi)
2 (3)

where ŷLi,k is the matching scores produced by the fine-

grained encoder with the following dense layer, K denotes

the number of phrases produced for a given SQL query.

Moreover, we use the listwise version of the loss function

to further expand this loss.

• Phrase Triplet Loss. To maximize the fine-grained similarity

within a positive pair and minimize the similarity within

a negative pair, we split the phrases of candidate SQL

queries for a given NL query into a positive set h+
si , and

a negative set h−si , respectively. Considering that positive

parts are the key to separating the mismatched image text

pair, we propose LP
3 to further push away negative parts

against positive ones in the negative sentence. It also can be

interpreted as the penalty on mismatched parts to guide the

matching model to make decisions more grounded on them.

We use the triplet loss TriLα to calculate as follows,

LP
3 = TriLα(hqi , h

+
si , h

−
si) (4)

where α is a scalar to regulate the distance between the

cosine score of the NL query, positive and negative samples.

Inference. During inference, we use the score (Qi, Si) for

each item to rank the list of candidate SQL queries,

score(qi, si) = ŷGi +
K∑

k=1

ŷLi,k (5)

IV. EXPERIMENTAL EVALUATION

In this section, we assess the performance of METASQL by

applying it to the most advanced NL2SQL models.

A. Experimental Setup

1) Benchmarks: We conduct extensive experiments on

the challenging NLIDB benchmarks SPIDER and SCI-

ENCEBENCHMARK to evaluate the performance of METASQL.

• SPIDER [16] is a large-scale cross-domain benchmark,

which includes 10, 181 NL queries and 5, 693 unique SQL

queries on 206 databases with multiple tables covering 138
different domains. SPIDER authors further split the data

into 4 types, namely Easy, Medium, Hard, and Extra Hard,

based on the SQL hardness criteria we mentioned in Section

III-A. That is, queries that contain more SQL keywords

such as GROUP BY, INTERSECT, nested subqueries, and

aggregators, are considered to be harder.

In light of the inaccessible SPIDER test set behind an

evaluation server, our experiments primarily focused on the

SPIDER validation set. We apply METASQL to LGESQL and

submit to the SPIDER authors to get the evaluation result on

the test set of SPIDER benchmark (See Table 4).

• SCIENCEBENCHMARK [35] serves as a complex benchmark

for three real-world, scientific databases, namely OncoMx,

Cordis and Sdss. For this benchmark, domain experts crafted

103/100/100 high-quality NL-SQL pairs for each domain,

then augmented with synthetic data generated using GPT-3.

In our experiments, we use the Spider Train (Zero-Shot)
setting (i.e., train models on SPIDER train set, and directly

run the evaluation on the human-curated dev set of the

respective three databases) introduced in [35].

2) Training Settings: The subsequent section explains

the implementation specifics of the three models used in

METASQL, i.e., the multi-label classification model, the first-

stage ranking model, and the second-stage ranking model.

Multi-label Classification Model. As mentioned in Section

III-A, the multi-label classification model can be obtained from

any NL2SQL translation model by substituting its top layer

with a classification layer. In our experiments, we use LGESQL

as the base translation model to implement.

First-stage Ranking Model. The embedding layer is initial-

ized with publicly available pre-trained sentence-transformers

STSB-MPNET-BASE-V26 model. In training, we use Adam

[61] optimizer with a learning rate of 2e-5 and warm up over

the first 10% of total steps. The batch size is set to 8.

Second-stage Ranking Model. The model is based on

ROBERTA-LARGE [62]. We use Adam optimizer with a

learning rate of 1e-5 and adopt a schedule that reduces the

learning rate by a factor of 0.5 once learning stagnates.

To further facilitate the listwise approach (as described in

Section III-C2), we configured the threshold L to 10, which

enabled us to generate a list of 10 SQL queries for each NL

query. In addition, we set the batch size to 2 per GPU in

the training phase to expedite the process. Consequently, 60
NL-SQL pairs were utilized in each training iteration.

3) Inference Settings: Regarding to the multi-label classi-

fication model, we designated the classification threshold p to

be 0, thereby enabling the selection of all conceivable query

metadata labels. With respect to the first-stage ranking model,

we configure it to select the top ten most highly ranked subsets

from candidate SQL queries before passing the selected subset

to the second-stage ranking model for final inference.

4) Evaluation Metrics: We adopt translation accuracy
(EM), execution match (EX), translation precision, and ranking

metric translation MRR [63] to assess model performance.

Translation Accuracy evaluates whether the top-1 generated

SQL query matches the “gold” SQL; if it does, the translation

6https://huggingface.co/sentence-transformers/stsb-mpnet-base-v2
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TABLE 3: Illustrate few-shot prompts with LLMs, exclusively applying metadata (underlined) in combination with METASQL.

Instruction #### Give you database schema, NL question, and metadata information of the target SQL, generate an SQL query.

Demonstrations

#### Learn from the generating examples:
Schema: Table Player with columns 'pID', 'pName', 'yCard', 'HS'; Table Tryout with columns 'pID', 'cName', 'pPos', 'decision';
Question: For each position, what is the maximum number of hours for students who spent more than 1000 hours training?;
The target SQL only uses the following SQL keywords: JOIN, WHERE, GROUP; The difficulty rating of the target SQL is 350;

#### The target SQL is:
SELECT max(T.HS),T2.pPos FROM player AS T JOIN tryout AS T2 WHERE T.HS>1000 GROUP BY T2.pPos

Inference

#### Please follow the previous example and help me generate the following SQL statement:
Schema: ...
Question: Return the names of conductors that do not have the nationality “USA”.
The target SQL only uses the following SQL keywords: WHERE; The difficulty rating of the target SQL is 100;

#### The target SQL is:

is considered accurate. Otherwise, it is deemed inaccurate. It is

a performance lower bound since a semantically correct SQL

query may differ from the “gold” SQL query syntactically.

The metric is equivalent to the Exact Match Accuracy metric

proposed by SPIDER. It involves comparing sets for each SQL

statement, and specific values are disregarded when conducting

the accuracy calculation between the two SQL queries.

Execution Accuracy evaluates if the execution result matches

the ground truth by executing the generated SQL query against

the underlying relational database. This metric is the same as

the Execution Match Accuracy metric introduced in SPIDER.

Translation Precision at K (denoted Precision@K) is the

number of NL queries that an NLIDB system has the “gold”

SQL queries in the top-K translation results divided by the

total number of NL queries. In our experiments, we choose K
to 1, 3, and 5 to evaluate the performance of METASQL.

Translation MRR (Mean Reciprocal Rank) is a statistic

measure for evaluating an NLIDB system that provides a

ranked list of SQL queries in response to each NL query. The

metric is defined in the following way,

MRR = 1
N

∑N
i=1

1
ranki

(6)

where N denotes the number of given NL queries and ranki
refers to the rank position of the “gold” SQL query for the

ith NL query. Thus, the closer the value of MRR is to 1, the

more effective the translation ranking scheme is.

B. Experimental Results

We utilized METASQL with four Seq2seq NL2SQL trans-

lation models: BRIDGE, GAP, LGESQL and RESDSQL7, in

addition to two widely known LLMs, CHATGPT and GPT-

4. To evaluate the LLMs, we conduct experiments using the

few-shot prompting structure introduced in [15]. This prompt

structure entails providing instructions preceded by a few

demonstrations (inputs, SQL) pairs8, where the inputs are

carefully crafted to include an NL question, a descriptive

text about the database schema, including tables and columns,

7RESDSQL model was implemented using three different scales of T5,
namely Base, Large and 3B. We apply METASQL to RESDSQL model with
T5-LARGE scale, referred to as RESDSQLLARGE in the following.

8In our experiments, we use nine demonstrations for each query.

primary-foreign key specifications (optional)9, along with sup-

plementary metadata information for use with METASQL. (For

specific details, refer to Table 3.) We leverage the Whisper

API10 provided by OpenAI to make the inference.
Table 4 summarizes the overall accuracy of the models.

Overall, modern NL2SQL models demonstrate much bet-

ter performance on SPIDER compared to SCIENCEBENCH-

MARK. In particular, due to the complexity of queries in the

SDSS database of SCIENCEBENCHMARK (involving numerous

WHERE conditions and JOIN operations), all models exhibit

poor performance, hovering around 10%. This underscores a

notable challenge in handling queries in real-world databases.
METASQL with Seq2seq Models. The overall performance

of all four baseline translation models can be consistently

improved using METASQL across two benchmarks, with more

noticeable improvements observed on SCIENCEBENCHMARK

benchmark. It is worth noting that, except for BRIDGE and

RESDSQLLARGE, the other two models (GAP and LGESQL)

lack explicit handling of specific values in SQL queries.

Consequently, the two models tend to exhibit lower execution

accuracy compared to their translation accuracy on SPIDER.
One remarkable outcome is observed when applying

METASQL to LGESQL. It attains an impressive 8.0% improve-

ment (from 4.0% to 12.0%) on the challenging SDSS database

of SCIENCEBENCHMARK. Simultaneously, it achieves a trans-

lation accuracy of 77.4% on the validation set and 72.3% on

the test set of the SPIDER benchmark, which is on par or higher

than those of leading models on the SPIDER leaderboard. In

addition, while LGESQL is not designed for value prediction,

utilizing METASQL can significantly improve the execution

accuracy by 5.7% (and 21.5%) on the validation and test set,

respectively. The reason for this improvement is the explicit

addition of values before the ranking procedure in METASQL.
METASQL WITH LLMS. Notably, METASQL significantly el-

evates the performance of CHATGPT and GPT-4, compared to

those Seq2seq-based counterparts. This substantial difference

in improvement can be attributed to two key factors: 1) Given

that METASQL relies on the underlying translation model to

9We observed that since most column names in SPIDER’s databases are
descriptive, LLMs can infer key relationships without explicit prompts.
However, given that column names in SCIENCEBENCHMARK’s databases are
mostly symbolic, it is essential to include key specifications in the prompt.

10https://openai.com/blog/introducing-chatgpt-and-whisper-apis
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TABLE 4: Translation results on the two public NLIDB benchmarks.

SPIDERDev SPIDERTest SCIENCEBENCHMARK1

NLIDB Models EM% EX% EM% EX% EM%(ONCOMX) EM%(CORDIS) EM%(SDSS)

BRIDGE [36] 68.7 68.0 65.0 64.3 16.5 23.0 5.0
BRIDGE+METASQL 70.5(↑1.8) 69.2(↑1.2) - - 18.6(↑2.1) 25.0(↑2.0) 7.0(↑2.0)
GAP [9] 71.8 34.9 69.7 - 33.0 20.0 5.0
GAP+METASQL 73.4(↑1.6) 37.2(↑2.3) - - 35.0(↑2.0) 20.0 6.0(↑1.0)
LGESQL [11] 75.1 36.3 72.0 34.2 41.7 24.0 4.0
LGESQL+METASQL 77.4(↑2.3) 42.0(↑5.7) 72.3(↑0.3) 55.7(↑21.5) 42.7(↑1.0) 28.0(↑4.0) 12.0((↑8.0)
RESDSQLLARGE [12] 75.8 80.1 - - 42.7 29.0 4.0
RESDSQLLARGE+METASQL 76.9(↑1.1) 81.5(↑1.4) - - 49.7(↑7.0) 33.0(↑4.0) 10.0(↑6.0)
CHATGPT 51.5 65.3 - - 51.2 40.0 11.0
CHATGPT+METASQL 65.1(↑13.6) 74.2(↑8.9) - - 53.2(↑2.0) 42.0(↑2.0) 16.0(↑5.0)
GPT-4 54.3 67.4 - - 65.7 42.0 15.0
GPT-4+METASQL 69.6(↑15.3) 76.8(↑9.4) - - 68.6(↑2.9) 42.0 17.6(↑2.6)

1 As the database files for CORDIS and SDSS are inaccessible, our evaluation is limited to the translation accuracy metric for SCIENCEBENCHMARK.

generate SQL candidates, the overall improvement largely

depends on the quality of the SQL generation. Thanks to their

powerful generation capability, modern LLMs can effectively

harness METASQL to produce high-quality SQL candidates,

yielding superior outputs. 2) LLMs serve as NL2SQL models

without specific fine-tuning over existing benchmarks. This

inherent diversity in the generation is complemented by the

guidance from METASQL, enabling LLMs to align more

effectively with benchmark-specific targeted outputs.

An outstanding result emerges from METASQL with GPT-

4, yielding a translation accuracy of 69.6% and an execution

accuracy of 76.8% on SPIDER validation set, surpassing its

performance by 15.3% and 9.4%, respectively. Furthermore,

METASQL with GPT-4 attains a translation accuracy of 68.6%

on the ONCOMX database of SCIENCEBENCHMARK.

TABLE 5: EM(%) on SPIDER validation set by SQL difficulty levels
NL2SQL Models Easy Medium Hard Extra Hard Overall
BRIDGE 91.1 73.3 54.0 39.2 68.7
BRIDGE+METASQL 89.1(↓2.0) 75.3(↑2.0) 58.0(↑4.0) 42.8(↑3.6) 70.5

GAP 91.5 74.2 64.4 44.2 71.8
GAP+METASQL 91.1(↓0.4) 78.0(↑3.8) 64.9(↑0.5) 43.4(↓0.8) 73.4

LGESQL 91.9 77.4 65.5 53.0 75.1
LGESQL+METASQL 94.0(↑2.1) 81.4(↑4.0) 70.1(↑4.6) 49.4(↓3.6) 77.4

RESDSQLLARGE 90.3 82.7 62.6 47.0 75.8
RESDSQLLARGE+METASQL 92.5(↑2.2) 83.9(↑1.2) 64.1(↑1.5) 48.2(↑1.2) 76.9

CHATPGT 84.7 51.3 39.7 15.1 51.5
CHATPGT+METASQL 89.0(↑3.3) 70.6(↑19.3) 55.2(↑15.5) 24.4(↑9.3) 65.1

GPT-4 82.2 56.3 51.3 14.6 54.3
GPT-4+METASQL 91.1(↑8.9) 74.7(↑18.4) 64.1(↑12.8) 36.1(↑21.5) 69.6

Next, we performed detailed experiments on SPIDER for

METASQL. Table 5 provides a breakdown of the translation

accuracy on the SPIDER benchmark, categorized by the de-

fined SQL difficulty levels. As expected, the performance of

all the models drops with increasing difficulty. By applying

METASQL, significant improvements are consistently observed

for all translation models in the “Medium” and “Hard” queries,

albeit with some degree of instability in other difficulty levels.

For the instability observed in the “Easy” queries with BRIDGE

and GAP, we find that METASQL occasionally ranks semantic-

equivalent queries, leading to evaluation failures on the trans-

lation accuracy metric. On the other hand, for the instability of

the “Extra Hard” queries with GAP and LGESQL, we attribute

it primarily to inaccurate multi-grained signals that may be

produced within complex queries, resulting in the incorrect

ranking outcomes. This inaccuracy stems from the limitations

of the rule-based approach outlined in Section III-C, where

the pre-defined set of rules may fall short in addressing a

SQL unit if its complexity is not explicitly considered (e.g., a

nested query with more than two predicates).
We also present the accuracy results of METASQL compared

with base models regarding SQL statement types in Table

6. While the overall performance of six translation models

can be effectively improved using METASQL, the breakdown

results vary. Two findings from the results: (1) METASQL can

significantly enhance query translations involving ORDER BY
and GROUP BY-clauses, which is mainly due to the bene-

fits derived from the ranking procedure. (2) Seq2seq-based

translation models with METASQL deteriorate on translating

nested-type complex queries (including NOT IN-type negative

queries), which the reason aligns with the instability observed

in the “Extra Hard” queries discussed above.

TABLE 6: EM(%) on SPIDER validation set by SQL statement types
NL2SQL Models Nested Negation ORDERBY GROUPBY
BRIDGE 42.8 52.9 63.6 56.8
BRIDGE+METASQL 39.6(↓3.2) 49.5(↓3.4) 70.6(↑7.0) 63.8(↑7.0)
GAP 47.2 60.0 71.0 67.9
GAP+METASQL 44.7(↓2.5) 56.8(↓3.2) 73.2(↑1.8) 68.6(↑0.7)
LGESQL 54.1 62.1 74.9 67.9
LGESQL+METASQL 51.6(↓2.5) 62.1(−) 78.8(↑3.9) 69.7(↑1.8)
RESDSQLLARGE 50.3 57.9 74.0 72.0
RESDSQLLARGE+METASQL 50.0(↓0.3) 59.1(↑1.2) 75.6(↑1.6) 73.1(↑1.1)
CHATGPT 28.3 47.4 42.0 29.5
CHATGPT+METASQL 43.1(↑14.8) 50.7(↑13.3) 54.5(↑12.5) 44.4(↑14.9)
GPT-4 33.3 45.0 46.0 36.5
GPT-4+METASQL 47.2(↑13.9) 55.0(↑10.0) 74.0(↑28.0) 51.9(↑15.4)

To assess the performance of the ranking pipeline in

METASQL, Table 7 shows the translation precision and MRR

results on SPIDER validation set. Note that MRR values are

calculated treating the reciprocal rank as 0 when the “gold”

query is not among the final top-5 results for a given NL query.
As can be seen in Table 7, METASQL with RESDSQLLARGE

attains a translation MRR of 78.8%, surpassing the other

models. The results also demonstrate that METASQL can

correctly select the target SQL queries in the first few re-

turned ranking results in most cases. This compelling evidence

highlights its effectiveness, especially when compared with
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existing auto-regressive decoding techniques utilizing beam

search or sampling methods. In particular, METASQL with

LGESQL (and with GAP) achieves about 81.0% translation

precision in the top-5 retrieved results.

TABLE 7: Precision and MRR (%) on SPIDER validation set
NL2SQL Models MRR Precision@1 Precision@3 Precision@5
BRIDGE+METASQL 73.8 70.5 76.7 78.6
GAP+METASQL 76.4 73.4 79.9 81.0
LGESQL+METASQL 78.2 76.8 79.6 80.9
RESDSQLLARGE+METASQL 78.8 77.2 80.6 80.1
CHATGPT+METASQL 52.6 51.5 64.3 64.5
GPT-4+METASQL 69.6 69.6 72.5 72.5

Concerning a multi-stage solution like METASQL, a natural

question arises about the potential impact of different stages

on the overall outcome. To deepen our understanding of

METASQL, we experimented on SPIDER validation set to

evaluate the performance of each stage: For the first stage

(i.e., metadata selection), we evaluated the accuracy of this

stage by checking if predicted metadata labels could compose

the ground-truth metadata. The second stage (i.e., metadata-

conditioned generation) accuracy was determined by assessing

if generated SQL queries, conditioned on metadata composi-

tions from ground-truth labels, matched the “gold” query. For

the last ranking stage, the accuracy was evaluated using the

translation MRR, where the NL2SQL model generated rank-

ing candidates conditioned on metadata compositions from

ground-truth labels. Table 8 presents the accuracy results.

TABLE 8: Stage-wise accuracy (%), with bracketed values indicating
the performance of the respective base models. As we utilized a
unified multi-label classifier (implemented based on LGESQL) in our
experiments, the accuracy remains consistent in the first stage.

Model Metadata Selection
Accuracy

Metadata-conditioned
Generation Accuracy

Ranking
Accuracy

BRIDGE+METASQL 91.4 77.3 (68.7) 87.1
GAP+METASQL 91.4 77.9 (71.8) 88.4

LGESQL+METASQL 91.4 82.7 (75.1) 90.3
RESDSQLLARGE+METASQL 91.4 83.1 (75.8) 89.6

As can be seen, the performance of each stage remains

consistently accurate across all three stages, while the sec-

ond stage exhibits relatively notable performance fluctuations,

attributed to the inherent limitations in underlying translation

models. The results illustrate that METASQL effectively opti-

mizes the performance of each stage in the current settings,

thereby contributing to overall performance improvements.

C. Metadata Sensitivity Analysis

To gain a deeper understanding of METASQL, we perform

a sensitivity analysis of the query metadata, specifically on

LGESQL. Our exploration revolves around two key questions:

1) Does the model respond appropriately to variations in
this conditioning metadata? and 2) What are the optimal
settings for generating this metadata during testing when it is
inaccessible? The experimental results are detailed in Fig. 6.

Metadata Selection Rate (Fig. 6a). To begin, we examine the

sensitivity of METASQL concerning the metadata selected from

the multi-label classifier in order to measure the importance of

metadata quality to model performance. For this purpose, we

intentionally select more “noisy” metadata by systematically

reducing the classification threshold p from its default value of

0 to its minimum predicted value of −60, effectively leading

to a “randomized” metadata selection scenario.

The findings indicate a strong dependence of METASQL’s

performance on the metadata selected from the multi-label

classifier. With more “noisy” metadata involved, the im-
provements yielded by METASQL diminish significantly,
and in some cases, even lead to performance degradation.
Particularly, since the multi-label classifier tends to generate

high-confidence predictions, a significant performance drop is

observed when p is lower than −10, primarily due to the

increased involvement of “noisy” metadata.

Correctness Indicator (Fig. 6b). Here, our focus lies in

investigating the extent to which METASQL relies on this

metadata by supplying either an incorrect or even no indicator.

Overall, METASQL responds appropriately to the changes

of this metadata, experiencing a reduction in performance

when conditioned on an incorrect indicator or no correctness

indicator is provided. It is worth noting that conditioning

on incorrect correctness indicator leads to slightly worse

performance than the latter scenario, indicating that providing
incorrect metadata may have a more detrimental impact on
METASQL compared to providing no metadata at all.
Hardness Value (Fig. 6c). We examine how the hardness

values provided to METASQL affect its performance. Our

experiment involves two configurations: 1) we maintain a fixed

hardness value, independent of the query, and 2) we provide

the oracle hardness values during the inference time.

The findings reveal that the performance of METASQL
remains relatively stable with changes in the hardness values.
This is attributed to two aspects: 1) The hardness values

obtained from the multi-label classifier closely align with

the oracle values in most cases, and METASQL can generate

correct SQL queries even when the inference-time hardness

values are not identical to the oracle ones. 2) METASQL tends

to incorporate various types of metadata globally, rather than

relying solely on a specific type of metadata. In other words,

compared to other types of metadata, METASQL shows lower

sensitivity to this particular metadata.

Moreover, an intriguing finding is that specifying an easier

hardness value tends to yield better results than a harder one,

while still achieving worse performance than its current set-

ting. We posit that this is because existing translation models

often perform better on relatively straightforward queries.

Operator Tags (Fig. 6d). To assess the significance of operator

tag-type metadata, we analyze model performance in response

to various changes in this metadata. To experiment, we employ

two distinct settings: (1) we provide the oracle set of operator

tags for each query, and (2) we randomize operator tags.

The findings reveal that METASQL exhibits greater sensi-
tivity to operator tag-type metadata compared to other types
of metadata. The reason we believe is that this metadata can

provide useful generation constraints for METASQL, thereby

reducing the search space for the underlying model during

the auto-regressive decoding procedure, and hence resulting

in improved outcomes. Notably, with the aid of the oracle
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(a) Translation accuracy of METASQL with different classification
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Fig. 6: Metadata sensitivity analysis on METASQL

operator tags, METASQL with default classification threshold

setting (p = 0) can attain a translation accuracy of 81.3%.

D. Ablation Study

TABLE 9: Ablation study on SPIDER validation set. The “w/o Multi-
label Classifier” denotes candidate SQL queries generation with
all metadata compositions and the “w/o Phrase-level Supervision”
denotes removing NL-to-Phrase and Phrase Triplet loss from training.

Model Generation
Miss Count

Ranking
Miss Count Overall(%)

Base Model (LGESQL + METASQL) 185 56 77.4
w/o Multi-label Classifier 167 159 68.5(↓8.8)
w/o Phrase-level Supervision 185 87 75.2(↓2.2)
w/o Second-stage Ranking Model 185 253 57.7(↓↓19.7)

We conduct an ablation study on SPIDER validation set with

LGESQL to explore the efficacy of the multi-label classifier

and the second-stage ranking model. Our experiment involves

comparing three distinct settings: (1) brute-force generation

of candidate SQL queries by utilizing all possible metadata,

namely without a multi-label classifier, (2) controlling inclu-

sion of fine-grained features in the second-stage ranking model

and (3) employing the second-stage ranking model.
The results are presented in Table 9. The findings reveal

that our ranking process experiences a significant decline

in performance when it fails to capture relevant metadata

or exclude the second-stage precise ranking model. (Despite

some gains during the generation process in the former one.)

Additionally, the results demonstrate the essential role of fine-

grained supervision signal in the second-stage ranking model,

as the performance experiences a notable drop without it,

further emphasizing its significance in our approach.

E. Analysis of METASQL

To better understand METASQL, we analyzed the translation

results on SPIDER validation set. We identify the following

three major categories for the failures.

• Auto-regressive Decoding Problem. A significant num-

ber of translation errors in the generation process can be

attributed to the limitations of auto-regressive decoding

used in existing translation models. This means that despite

accurate metadata provided by METASQL, the underlying

translation model may still produce incorrect translations.

Such errors are particularly noticeable in some complex

queries, as demonstrated by the following example,

NL Query: What major is every student who does not own
a cat as a pet, and also how old are they?
Gold SQL Query:
SELECT major, age FROM student
WHERE stuid NOT IN (
SELECT T1.stuid FROM student AS T1
JOIN has pet AS T2 JOIN pets AS T3
WHERE T3.pettype = 'cat')

Incorrect Generated SQL Query:
SELECT major, age FROM student
WHERE stuid NOT IN (
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SELECT has pet.stuid FROM has pet JOIN pets
WHERE pets.pettype = 'cat')

As can be seen, METASQL fails to generate the correct

join path (i.e., student-has pet-pets) used in the

nested query, even though the generation is conditioned on

the oracle query metadata (i.e., 450, where, subquery). To

a certain degree, enabling model sampling during query

generation may mitigate such failures, but enhancing the

performance of the translation model is crucial for long-

term improvements in accuracy.

• Metadata Mismatch Problem. Another large portion of

translation errors in the generation process is due to inaccu-

rate query metadata retrieved from the multi-label classifier.

For example, the following is an example in SPIDER,

NL Query: How many countries has more than 2 makers?
Oracle Metadata: 200, group, join
Predicted Metadata: 350, group, subquery
Gold SQL Query:
SELECT count(*) FROM
countries AS T1 JOIN car makers AS T2
GROUP BY T1.countryid HAVING count(*)>2
Incorrect Generated SQL Query:
SELECT count(*) FROM (
SELECT country FROM car makers
GROUP BY country HAVING count(*)>2)

Given that METASQL erroneously extracts subquery meta-

data, the underlying translation model was altered to gen-

erate a query resembling a subquery. As a result, it is

imperative to establish a more dependable approach for

selecting pertinent metadata for METASQL.

• Ranking Problem. Many mistranslations stem from the

ranking procedure, primarily in the second stage. Even when

the “gold” query is included as a candidate, METASQL may

not prioritize the “gold” query at the top position. Such

failures are commonly observed in queries with join oper-

ations, where the increased abstraction in query semantics

poses challenges. An illustrative example is provided below,

NL Query: Which car models are produced after 1980?
Gold SQL Query:
SELECT T1.model FROM model list AS T1
JOIN car names AS T JOIN car data AS T3
WHERE T3.year > 1980
Top-ranked SQL Query:
SELECT T2.model FROM cars data AS T1
JOIN car names AS T2 WHERE T1.year > 1980

Such failures may be eliminated if more specific semantics

over the underlying database can be captured and incorpo-

rated into the training of the ranking model.

From the above analysis, we enhance our comprehension of

various aspects of METASQL and explore some improvements

that can be made in the future.

V. RELATED WORK

NLIDBs have been studied for decades both in the database

management and NLP communities. Early works [1], [64]–

[69] employ rule-based approaches with handcrafted grammars

to map NL queries to database-specific SQL queries. The

recent rise of deep learning leads to machine learning-based

approaches, treating NLIDB as a Seq2seq translation task

using the encoder-decoder architecture [4], [6], [10]–[12], [16],

[24], [36], [70]–[74]. However, these Seq2seq-based methods,

due to their auto-regressive decoding nature, face limitations in

handling complex queries. Instead of relying on standard auto-

regressive decoding, METASQL uses control signals to better

control SQL generation, resulting in improved outcomes.

With the excellent success of LLMs in various NLP tasks,

recent works have explored applying LLMs to the NL2SQL

task [14], [15], [41]–[43]. [41], [42] systematically evaluate

the NL2SQL capabilities of existing LLMs. To optimize the

LLM prompting, recent studies [14], [15] have curated detailed

prompts for improved SQL query generation. Moreover, a

more recent study [43] aims to capitalize on the comple-

mentary strengths of fine-tuned translation models and LLMs,

striving for zero-shot NL2SQL support. Unlike various ex-

isting approaches, METASQL introduces a unified framework

that harnesses the advantages of existing LLMs and further

enhances their translation performance.

VI. CONCLUSION & FUTURE WORK

This paper proposed a unified framework named METASQL

for the NL2SQL problem, which can be used for any existing

translation models to enhance their performance. Instead of

parsing NL query into SQL query end to end, METASQL

exploits the idea of controllable text generation by introducing

query metadata for better SQL query candidates generation

and then uses learning-to-rank algorithms to retrieve globally

optimized queries. Experimental results showed that the per-

formance of six translation models can be effectively enhanced

after applying METASQL. Moreover, we conduct detailed

analysis to explore various aspects of METASQL, which gain

more insights on this novel generate-then-rank approach.

Although METASQL has demonstrated its effectiveness in

its current form, these results call for further future work in

this direction. One potential area of investigation is how to

extend the generate-then-rank approach beyond the existing

auto-regressive decoding paradigm, allowing METASQL to

overcome the limitations observed in the decoding procedure

of existing translation models and hence further improve

their performance. Additionally, developing a more precise

multi-grained semantics labeling method, particularly for those

complex queries, in the ranking process is critical for further

enhancing the performance of METASQL. Finally, an intended

future research direction is exploring the possibility of inte-

grating other types of metadata into METASQL.
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