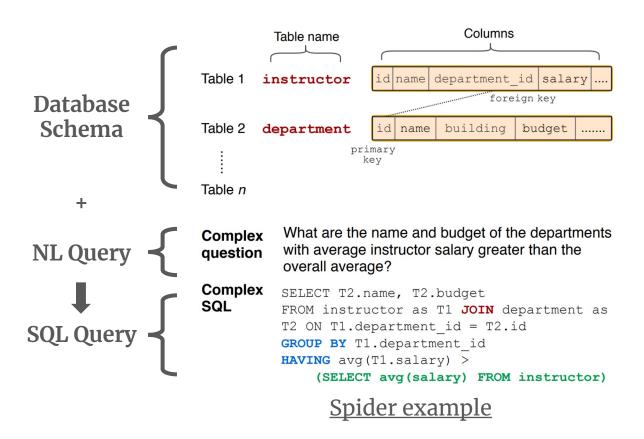


MetaSQL: A Generate-then-Rank Framework for Natural Language to SQL Translation

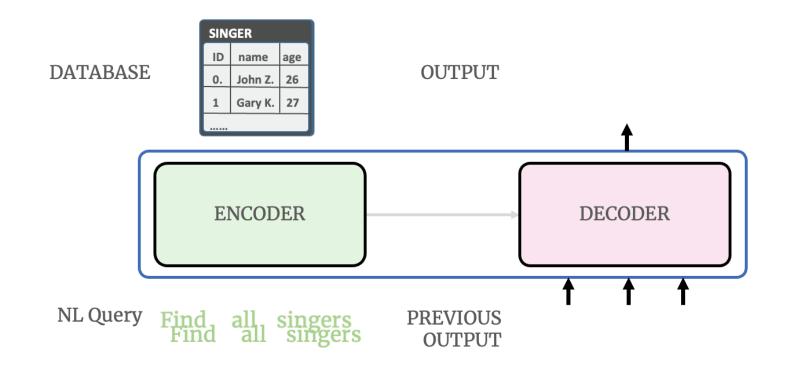
Yuankai Fan, Zhenying He, Tonghui Ren, Can Huang, Yinan Jing, Kai Zhang, X.Sean Wang **Fudan University**

What is NL2SQL?



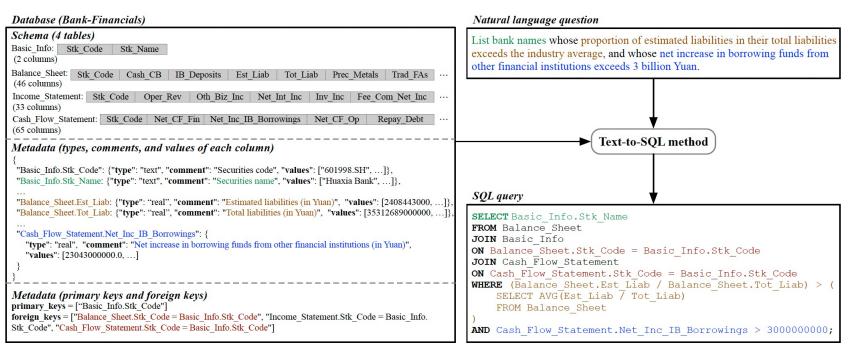
Mainstream Approach - Seq2Seq

- Based on **Sequence-to-sequence** framework
- Based on pre-trained language models



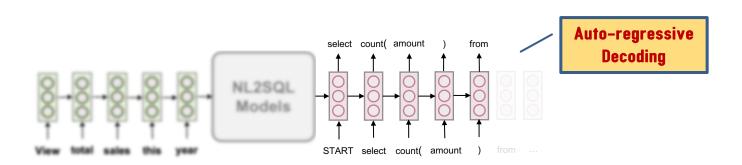
Mainstream Approach - LLM

- Large language models
 - Out-of-the-box or fine-tuned LLMs
- Use In-context learning with thoughtfully crafted prompts



Mainstream Approaches

 Mainstream approaches (either Seq2seq models or LLMs) primarily employ auto-regressive decoding to generate unique SQL queries



Existing Problem

• Problem: Auto-regressive decoding results in sub-optimal outputs • Lack of output diversity: beam search tends to exhibit repetitiveness

countryCode	language	isOfficial	percentage	code	name	continent	population			
ABW	Dutch	T	5.3	ABW	Aruba	North America	103000			
ABW	English	F	9.5	AFG	Afghanistan	Asia	22720000			
ABW	Papiamento	F	76.7	AIA	Anguilla	North America	8000			
ABW	Spanish	F	7.4	BMU	Bermuda	North America	65000			
AFG	Balochi	F	0.9	CHE	Switzerland	Europe	7160400			
AFG	Dari	T	32.1	CMR	Cameroon	Africa	15085000			
AFG	Pashto	T	52.4	COL	Columbia	South America	42321000			
AFG	Turkmenian	F) II (177					
AFG	Uzbek	F	NL Q	Query: V	Nhat are ti	he country co	des for cou	intries that do not speak English?		
BMU	English	T	907		SELECT C	countrycoc	le FROM	CountryLanguage EXCEPT		
			SQL (SQL (Gold): SELECT countrycode FROM CountryLanguage WHERE language='English'						
				-	SELECT C	countrycoc	e FROM	CountryLanguage WHERE Tanguage= English.		
			-	Beam search outputs from LGESQL model [11]						
			Top-1	SQL:	SELECT C			CountryLanguage WHERE language!='value'		
			Top-2	SQL:	SELECT c	code FROM	Country	Language JOIN Country WHERE language!='value'		
			Top-3	SQL:	SELECT C	countrycoc	le FROM	CountryLanguage WHERE language<='value'		
			Top-4	SQL:	SELECT C	code FROM	Country	Language JOIN Country WHERE surfacearea!='value'		
			Top-5	7 1 1 T 1 7 C 1 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C				Language JOIN Country WHERE countrycode!='value'		
			10p-3	SQL.	SELECT C	code FROM	Country.	danguage born country where countrycode:- value		

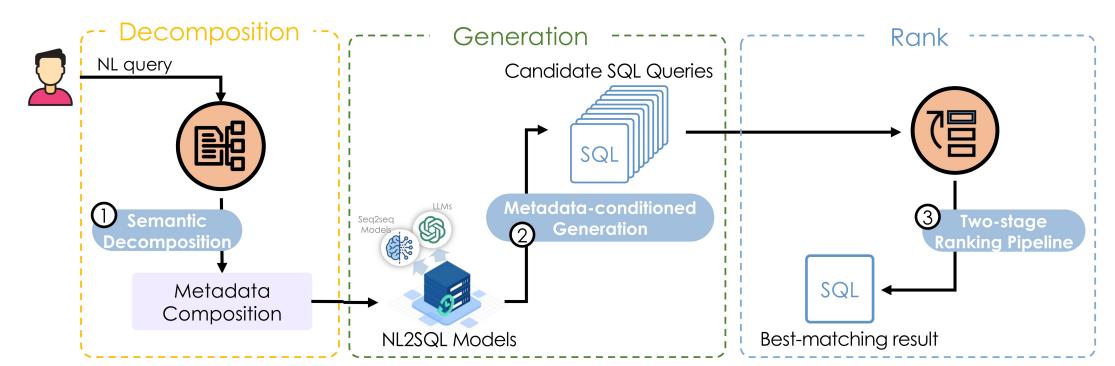
 Lack of global context awareness: with the incremental nature of sequential generation, it may encounter local optima as only partial context is considered

Can We Have a Unified Framework?

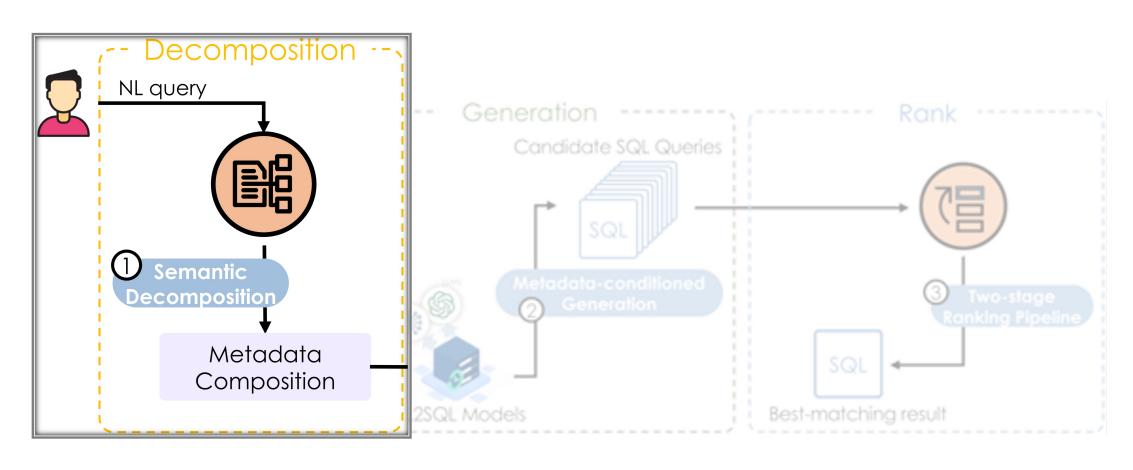
• Can we develop a unified framework for NL2SQL models, to improve their vanilla auto-regressive decoding?

What is MetaSQL?

- MetaSQL: NL2SQL with Metadata
 - **①** Semantics Decomposition
 - ② Metadata-conditioned Generation
 - **3** Learning-to-rank



Decomposition

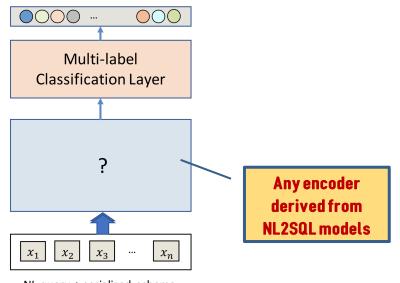


Decomposition

- Inspiration from competitivelevel coding
 - Solve problem with problem tags
- Decompose the meaning of NL into a set of query metadata
 - Opetator Tag (e.g., WHERE)
 - o Hardness Value (e.g., 200)
 - Correctness Indicator (e.g., correct)

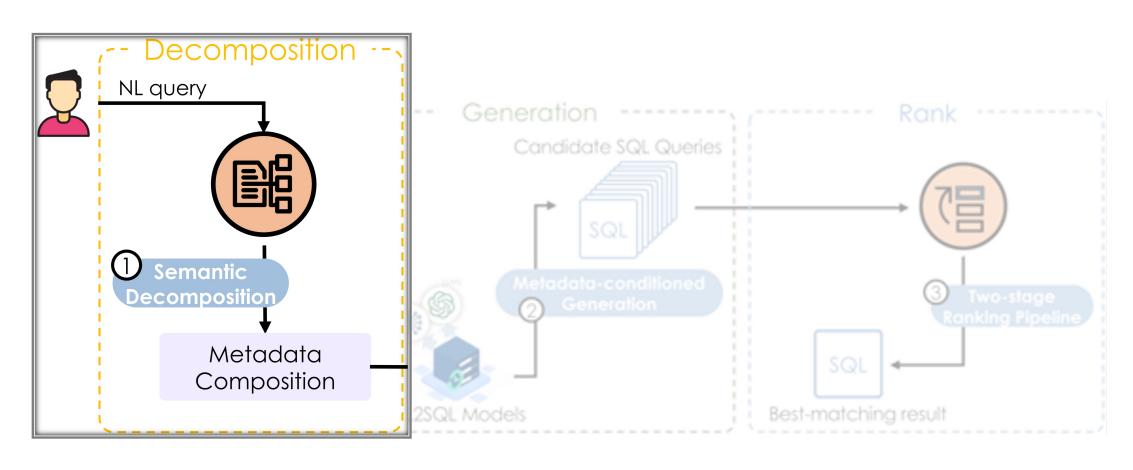
 Frame the NL-to-metadata as a multi-label classification problem



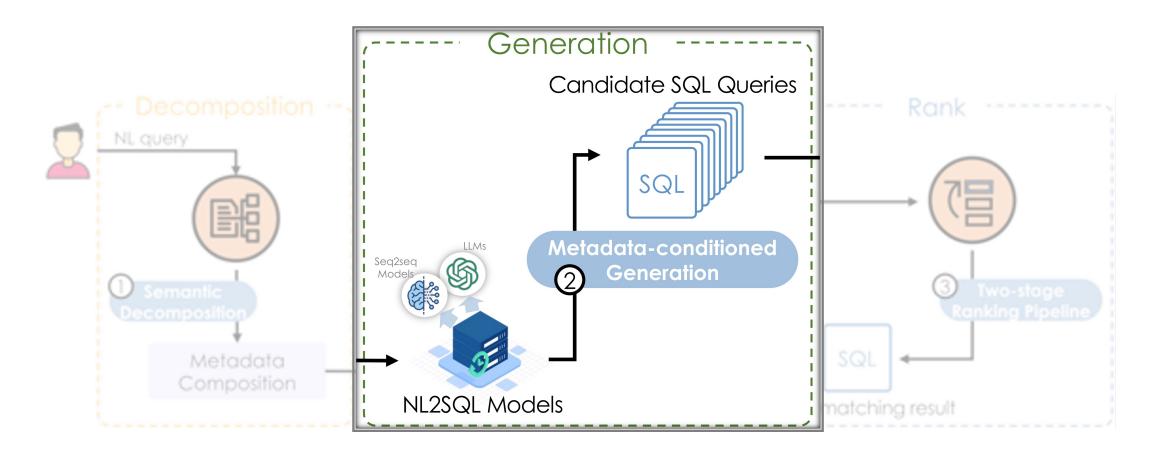


NL query + serialized schema

Decomposition

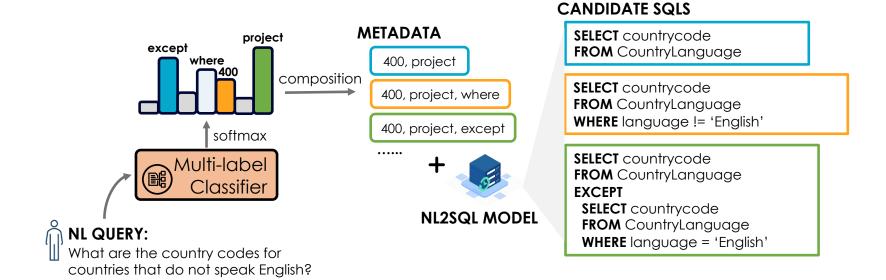


Generation

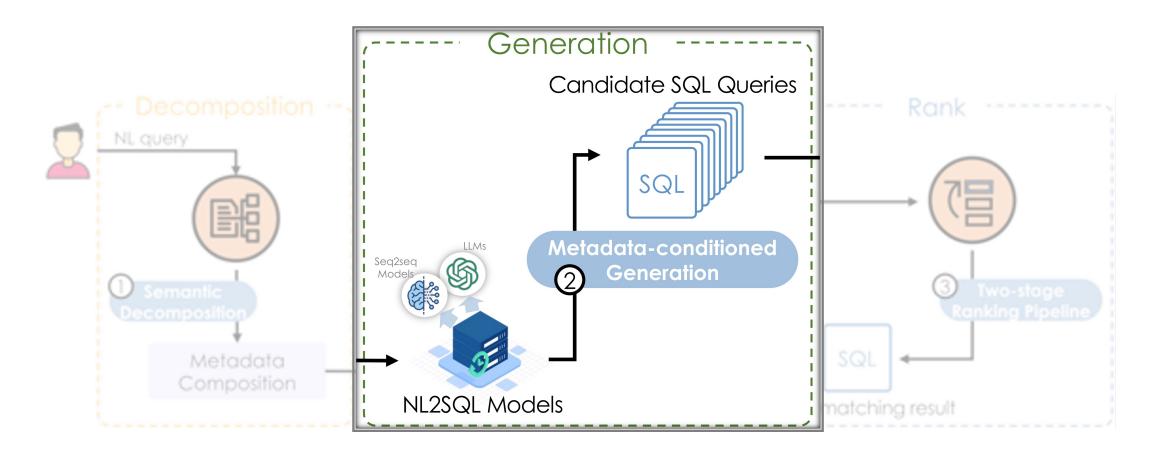


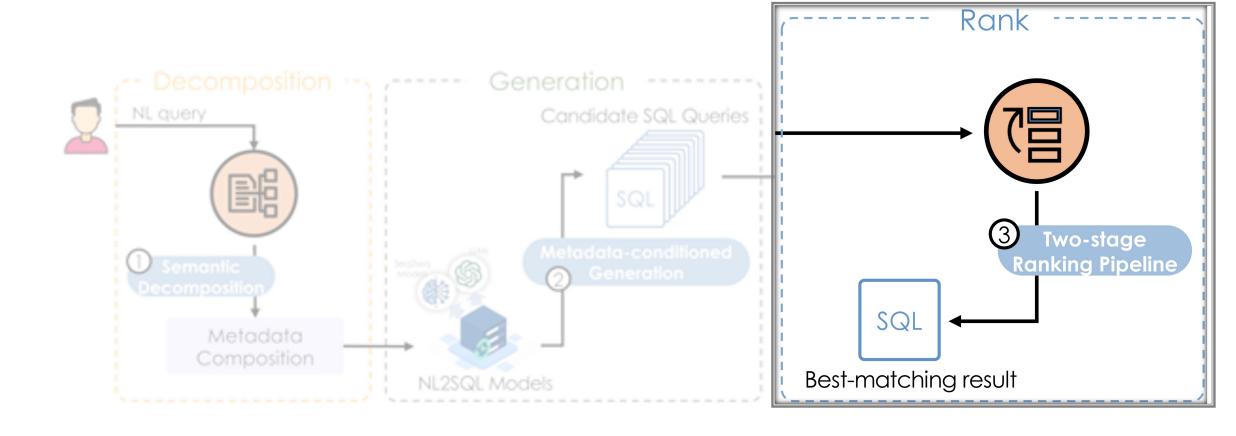
Generation

- Valinna NL2SQL -> Metadata-conditioned NL2SQL
- Metadata as language prompt
 - o For Seq2seq models, re-train by having metadata as extra inputs
 - o For LLMs, use in-context learning with metadata infomraiton



Generation





- Rank based on *semantic similarity* with NL and SQL
- Two-stage ranking pipeline
 - 1) First-stage ranking for fast filtering
 - Dual-tower architecture with similarity function
 - 2) Second-stage ranking for top-1 selection

- Two-stage Ranking pipeline
 - o First-stage ranking for fast filtering
 - o Second-stage ranking for top-1 selection

NL Query	Find the last name of the student who has a cat that is age 3.	Similarity Score
	FROM student JOIN has pet JOIN pets WHERE pets.pet_age=3 AND pets.pettype='cat'	0.76
Mismatched SQL Queries	FROM student lname FROM student JOIN has_pet JOIN pets WHERE pets.pettype='cat' AND pets.pet_age=3	0.82
	<pre>SELECT student.lname, pets.pettype FROM student JOIN has_pet JOIN pets WHERE pets.pet_age=3 AND pets.pettype='cat'</pre>	0.73
Matched SQL Query	<pre>SELECT student.lname FROM student JOIN has_pet JOIN pets WHERE pets.pettype='cat' AND pets.pet_age=3</pre>	0.72

Finer-graine

- Problem: Current ranking primarily rely on sentence-level supervision to distinguish matched and mismatched candidates
 - The semantic mismatch usually happens in finer grain, *i.e.*, phrase level

- Enhanced Second-stage ranking model
 - o Incorporate multi-grained signals (sentence-level and phrase-level)
 - Construct multi-scale loss
 - NL-to-SQL Global Loss

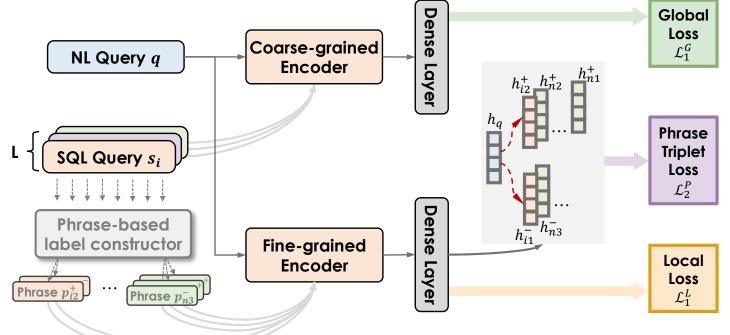
$$\mathcal{L}_0^G = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i^G - y_i)^2$$

o <u>NL-to-Phrase Local Loss</u>

$$\mathcal{L}_{1}^{L} = \frac{1}{N} \sum_{i=1}^{N} (\sum_{k=1}^{K} \hat{y}_{i,k}^{L} - y_{i})^{2}$$

o Phrase Triplet Loss

$$\mathcal{L}_3^P = TriL_{\alpha}(h_{q_i}, h_{s_i}^+, h_{s_i}^-)$$



Evaluation

- Benchmarks
 - ✓ Spider
 - ✓ ScienceBenchmark
- Metrics
 - ✓ Translation Accuracy (syntactic equivalence)
 - ✓ Execution Accuracy
 - ✓ Translation Precision/MRR (*for ranking evaluation*)

Evaluation

• Overall results on Spider and ScienceBenchmark datasets

	\mathbf{SPIDER}_{Dev}		\mathbf{SPIDER}_{Test}		SCIENCEBENCHMARK ¹		
NLIDB Models	EM%	EX%	EM%	EX%	EM%(ONCOMX)	EM%(CORDIS)	EM%(SDSS)
Bridge [36]	68.7	68.0	65.0	64.3	16.5	23.0	5.0
Bridge+Metasql	$70.5_{(\uparrow 1.8)}$	$69.2_{(\uparrow 1.2)}$	-	-11	$18.6_{(\uparrow 2.1)}$	$25.0_{(\uparrow 2.0)}$	$7.0_{(\uparrow 2.0)}$
GAP [9]	71.8	34.9	69.7		33.0	20.0	5.0
GAP+METASQL	$73.4_{(\uparrow 1.6)}$	$37.2_{(\uparrow 2.3)}$	-	-	$35.0_{(\uparrow 2.0)}$	20.0	$6.0_{(\uparrow 1.0)}$
LGESQL [11]	75.1	36.3	72.0	34.2	41.7	24.0	4.0
LGESQL+METASQL	$77.4_{(\uparrow 2.3)}$	$42.0_{(\uparrow 5.7)}$	$72.3_{(\uparrow 0.3)}$	55.7 _(↑21.5)	42.7 _(↑1.0)	$28.0_{(\uparrow 4.0)}$	12.0 _{((↑8.0)}
RESDSQL _{I ARGE} [12]	75.8	80.1	-	-	42.7	29.0	4.0
RESDSQL _{LARGE} +METASQL	$76.9_{(\uparrow 1.1)}$	$81.5_{(\uparrow 1.4)}$	-	-0	49.7 _(↑7.0)	$33.0_{(\uparrow 4.0)}$	$10.0_{(\uparrow 6.0)}$
СнатGPТ	51.5	65.3	-	-	51.2	40.0	11.0
CHATGPT+METASQL	$65.1_{(\uparrow 13.6)}$	$74.2_{(\uparrow 8.9)}$	-	-	$53.2_{(\uparrow 2.0)}$	$42.0_{(\uparrow 2.0)}$	$16.0_{(\uparrow 5.0)}$
G PT-4	54.3	67.4	-	-	65.7	42.0	15.0
GPT-4+METASQL	69.6 _(†15.3)	76.8 _(↑9.4)		-	68.6 _(↑2.9)	42.0	17.6 _(↑2.6)

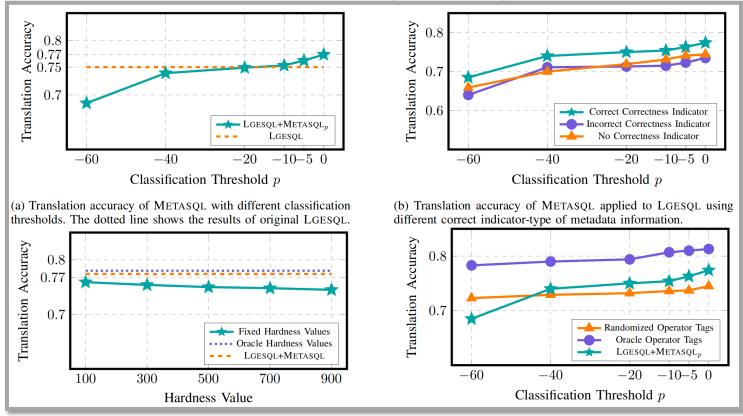
NL2SQL Models	Easy	Medium	Hard	Extra Hard	Overall
Bridge	91.1	73.3	54.0	39.2	68.7
BRIDGE+METASQL	$89.1_{(\downarrow 2.0)}$	$75.3_{(\uparrow 2.0)}$	$58.0_{(\uparrow 4.0)}$	$42.8_{(\uparrow 3.6)}$	70.5
GAP	91.5	74.2	64.4	44.2	71.8
GAP+METASQL	$91.1_{(\downarrow 0.4)}$	$78.0_{(\uparrow 3.8)}$	$64.9_{(\uparrow 0.5)}$	$43.4_{(\downarrow 0.8)}$	73.4
LGESQL	91.9	77.4	65.5	53.0	75.1
LGESQL+METASQL	$94.0_{(\uparrow 2.1)}$	$81.4_{(\uparrow 4.0)}$	$70.1_{(\uparrow 4.6)}$	$49.4_{(\downarrow 3.6)}$	77.4
RESDSQL _{LARGE}	90.3	82.7	62.6	47.0	75.8
RESDSQL _{LARGE} +METASQL	$92.5_{(\uparrow 2.2)}$	$83.9_{(\uparrow 1.2)}$	$64.1_{(\uparrow 1.5)}$	$48.2_{(\uparrow 1.2)}$	76.9
Снатрст	84.7	51.3	39.7	15.1	51.5
CHATPGT+METASQL	$89.0_{(\uparrow 3.3)}$	$70.6_{(\uparrow 19.3)}$	$55.2_{(\uparrow 15.5)}$	$24.4_{(\uparrow 9.3)}$	65.1
GPT-4	82.2	56.3	51.3	14.6	54.3
GPT-4+METASQL	$91.1_{(\uparrow 8.9)}$	$74.7_{(\uparrow 18.4)}$	64.1 _{(↑12.8})	$36.1_{(\uparrow 21.5)}$	69.6

NL2SQL Models	MRR	Precision@1	Precision@3	Precision@5
BRIDGE+METASQL	73.8	70.5	76.7	78.6
GAP+METASQL	76.4	73.4	79.9	81.0
LGESQL+METASQL	78.2	76.8	79.6	80.9
Resdsql _{Large} +Metasql	78.8	77.2	80.6	80.1
CHATGPT+METASQL	52.6	51.5	64.3	64.5
GPT-4+METASQL	69.6	69.6	72.5	72.5

MetaSQL can consistently improve model performance over six baseline models

Evaluation

Results on metadata sensitivity analysis



MetaSQL is relatively not sensitive to hardness values, while exhibits greater sensitivity to operator tags and correctness indicators

Conclusion

- Metadata bring good hints defor NL2SQL
- MetaSQL: A generate-then-rank framework for NL2SQL
 - Coarse-to-fine > End-to-end!
- GAR: A generate-then-rank approach for NL2SQL

Yuankai Fan <fanyuankai@fudan.edu.cn> https://github.com/Kaimary/MetaSQL