2023 IEEE 39th International Conference on Data Engineering (ICDE) | 979-8-3503-2227-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICDES55515.2023.00016

2023 IEEE 39th International Conference on Data Engineering (ICDE)

GAR: A Generate-and-Rank Approach for Natural
Language to SQL Translation

Yuankai Fan, Zhenying He, Tonghui Ren, Dianjun Guo, Lin Chen, Ruisi Zhu, Guanduo Chen
Yinan Jing, Kai Zhang, X.Sean Wang
School of Computer Science, Fudan University, Shanghai, China
{ykfan19, zhenying, thren20, djguo20, lin_chen20, rszhu20, gdchen18, jingyn, zhangk, xywangCS} @fudan.edu.cn

Abstract—A Natural Language (NL) Interface to Databases
(NLIDB) aims to help end-users access databases. State-of-the-
art approaches primarily construct language translation models
to convert NL queries to SQL queries. While these models
exhibit good performance on NLIDB benchmarks, the translation
accuracy seems to have stalled at between 70%-75%, and most
erroneous translations happen with complex queries that require
an understanding of the structure and semantics specific to a
database. This paper proposes a Generate-And-Rank approach
called GAR. GAR assumes that a set of sample SQL queries

O < . N Model Easy Medium Hard Extra Hard | Overall
is given to represent the possible user-intended queries to the GAP 0915 0742 0.644 0.494 0727
database. In order to provide a broad coverage, akin to avoiding SMBOP | 0.890 0.791 0.644 0.470 0.737

over-fitting, GAR extracts the basic components from the sample
set to form the basic building blocks to generate a set of general-
ized SQL queries. By leveraging a simple rule-based SQL to NL
technique, a less natural NL expression called a dialect expression
for each sample and generalized SQL query is obtained. Finally, a
learning-to-rank method is used for a given NL query to retrieve
the best dialect expression and hence the resulting SQL query. Ex-
tensive experiments are performed to study GAR in comparison
with other approaches. The results show that GAR achieves better
performance on the NLIDB benchmarks, including in particular
a 78.5% translation accuracy on the popular SPIDER benchmark,
outperforming the best reported accuracy in the literature. An
extension to GAR, called GAR-J, is further introduced to aid the
translation by annotating join semantics in the sample queries.
The experimental results show that GAR-J can further improve
translation accuracy on queries with joins. Code for GAR can
be found at https://github.com/Kaimary/GAR.
Index Terms—NLIDB, NL2SQL, SQL, learning-to-rank

I. INTRODUCTION

Designing user-friendly query interfaces for databases is
becoming an increasingly important goal [1], [2]. Recently,
due to the maturity of language translation techniques, some
interfaces have taken the form of translating natural language
(NL) queries to SQL queries using machine learning methods
[3]-[11]. The main idea is to consider the NL interface to
databases (NLIDB) problem as a language translation task and
train a generalized sequence-to-sequence (Seq2Seq) model.

Despite the significant gains in terms of translation accuracy
(defined as syntactic equivalence), the overall improvement,
however, seems to have stalled. Indeed, the translation accu-
racy results reported in the literature on the popular SPIDER
[12] benchmark are mostly below 75%, and the model [13]
on top of the SPIDER leaderboard' achieves only 72.1%

'https://yale-lily.github.io/spider. Note that the leaderboard uses unknown
testing queries and databases to evaluate submitted NLIDB algorithms.

translation accuracy on the test set at the time of writing.

Translation difficulties mostly arise in complex queries.
For example, take the two state-of-the-art models, GAP [9]
and SMBOP [8]. The translation accuracy breakdown on the
SPIDER benchmark, in terms of SQL “difficulty levels?, is as
follows:

TABLE 1: Translation accuracy on SPIDER by SQL difficulty levels

As can be observed, the performance of these translation
methods drops when queries become harder. The reason we
believe is that the harder queries may require significantly
more training data on the target database than usually (and
practically) given in the benchmarks, and the training data
on other databases are of little help. Indeed, every database
has its own peculiar structure and semantics, as if forming a
“universe” of its own with its own way of expressing ideas.

Consider the example in Fig. 1 that shows a “Hard” NL-
SQL queries pair and the translation results of the above two
models. Both models correctly use the join path employee—
evaluation, but fail to infer the “highest one time bonus”
with the right SQL clauses. GAP mistakenly infers the em-
ployee with “the most bonuses” semantics by counting the
number of the records for each employee, while SMBOP incor-
rectly gives the “total bonus” of each employee. This example
shows that the translation may fail if a given database’s pecu-
liar semantics and structure are not sufficiently considered.

To add more semantics into the translation, an ontology-
based approach [14] is reported to achieve some improve-
ments, but the approach is rule-based that requires the user-
given NL queries be annotated to map to the ontology elements
before translation. Another recent work [15] stipulates that
providing a small number of in-domain training examples may
be a more promising approach.

In this paper, we propose an approach called GAR. The
basic assumption is that a set of sample queries on a database
is given, and we can use SQL queries that are “component-
similar” to the given samples to answer NL queries. Here,
by “component-similar” we mean the queries that are built

2SPIDER defines the SQL difficulty based on the number of SQL clauses,
so that queries that contain more SQL keywords are considered to be harder.

2375-026X/23/$31.00 ©2023 IEEE 110
DOI 10.1109/ICDE55515.2023.00016
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

Database Schema:

[snop | EMPLOYEE
|shop_id [name [location [district | number_products | manager_name | | employee_id | name | age | city

[e
T j

Column-Column foreign keys (Known)

(a) A database schema in the SPIDER benchmark

NL Query: Find the name of the employee who got the highest one time bonus.
SQL Query: SELECT T1.name FROM employee AS T1
(Gold) JOIN evaluation AS T2 ON Tl.employee_id=T2.employee_id

ORDER BY T2.bonus DESC LIMIT 1

GAP model [9]
SELECT T1l.name FROM employee AS T1
JOIN evaluation AS T2 ON Tl.employee_id=T2.employee_id
GROUP BY T2.employee_id ORDER BY COUNT (*)
DESC LIMIT 1

Generated SQL:
(Incorrect)

SMBOP model [8]
SELECT Tl.name FROM employee AS T1
JOIN evaluation AS T2 ON Tl.employee_id=T2.employee_id
GROUP BY T2.employee_id ORDER BY SUM(T2.bonus
DESC LIMIT 1

Generated SQL:
(Incorrect)

(b) A pair of NL-SQL queries and the corresponding translation
results of two NLIDB models

Fig. 1: An example from the SPIDER benchmark

from some variations of the SQL components appeared in the
sample set. The more query varieties we have in the sample
set, the more capable our translation will be. (More details can
be found in Section III-A.)

With the above assumption, the specific database semantics
and structure that the users are interested in are made more
explicit in terms of the components in the sample SQL
queries. In this manner, GAR can handle much more complex
queries that the users may ask, as the space for SQL clause
combinations is significantly reduced. In the example of Fig. 1,
the given “gold” SQL query as a sample query indicates
that the semantics of combining the ordering operation with
column bonus is what’s interesting to the users. From the
sample, GAR generates component-similar queries to gain
more data for learning. (Detailed explanation of why GAR
works correctly with the example in Fig. 1 will be given in
late sections when the steps of GAR are presented.) In a way,
GAR works in the same spirit of GAN [16] that strives to
compensate for the lack of training data.

Briefly, GAR starts with a set of sample SQL queries on
a given database and works as follows. We first generalize
the sample set in an attempt to capture all the component-
similar SQL queries. We then translate the sample and gen-
eralized SQL queries to NL expressions (SQL2NL). These
NL expressions are mostly correct but less natural, hence
we call them “dialect” expressions. Note that these dialect
expressions are formed from the SQL queries on the given
database schema, so the schema information is considered in
GAR. The above process of generating the dialect expressions
is called the data preparation process. For a given NL query
on the given database, GAR looks into the set of dialect
expressions generated in the data preparation process and

111

employs a learning-to-rank (LTR) model to find the closest
dialect expression and hence the SQL translation result.

To evaluate the effectiveness of GAR, we conduct our exper-
iments on three public benchmarks, namely GEO [17], SPIDER
and MT-TEQL [18]. GAR attains 65.2% overall accuracy on
GEO?, 78.5% overall accuracy on SPIDER*, outperforming the
best reported accuracy of 76.4% on the validation set’ and
78.4% accuracy on MT-TEQL.

Although improving the state-of-the-art, GAR may still mis-
translate queries, especially those involving join operations,
since the join operations often raise the level of abstraction
in semantics that is difficult for GAR to infer from the
table/column names alone. Therefore, we extend GAR to
GAR-J by adding annotations to the join operations in the
SQL to NL step to help the translation. With GAR-J, the
translation accuracies improve to 67.8% and 78.9% on the
GEO and SPIDER benchmarks, respectively. In addition, we
develop a new benchmark (QBEN) that emulates a collection
of manually-curated NL-SQL query pairs in which the join
operations have semantic meanings that are more than simple
compositions of table/column names. GAR-J achieves 70.0%
accuracy on QBEN, while other NLIDB algorithms, including
GAR, can only achieve about 20-40% accuracy.

To summarize, our contributions is four-fold:

o We propose a novel GAR approach based on a set of
sample SQL queries to tackle the NL to SQL (NL2SQL)
translation problem. With such samples and the SQL2NL
technique, the peculiar semantics of databases may be ap-
propriately captured in the generated dialect expressions.

o We formulate the NL2SQL task as a semantic matching

problem, and utilize the LTR techniques in information

retrieval to achieve the NL query to dialect expression,
hence to SQL query translation.

We extend GAR to GAR-J to handle queries involving

joins with the help of annotation. We propose a new

benchmark QBEN that explicitly tests the robustness of

NLIDB systems for queries with joins.

o We perform a series of experiments to evaluate GAR and
GAR-J. The experiments show the better performance of
GAR and GAR-J over the existing ones. In addition, with
the experiments, we explore and gain more understanding
of the various aspects of GAR.

The remainder of this paper is organized as follows. First,
we give an overview of GAR in Section II. We then detail
the methodologies introduced in GAR in Section III. Next,
we discuss GAR-J in Section IV. We report the results of our
experiments in Section V. Finally, we discuss the related works
in Section VI and conclude in Section VII.

3Earlier rule-based methods may achieve better results on GEO but are
explicitly tuned, so we do not compare them in this paper.

4We assessed the validation set, as we cannot submit GAR to the scoreboard
for evaluation on the test set due to lacking sample SQL queries.

SThe validation set is the test data. It will not be used in training phase.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

INPUT A
Database User sample SQLs :

€

Parse &

Recompose ®Generolizoﬁon @SQLzNL

Large set of generalized SQLs
with the corresponding dialects

Best-matching
dialect & SQL

e

-

Learning-to-Rank

(See Fig. 3)
User NL query
o -
]

Dialect

Execute

i S T g S, e i 1, i S

Fig. 2: Overview of GAR

II. GAR IN BRIEF

In this section, we first provide a short explanation about
the usage of sample queries, as GAR relies on them to capture
user interests. Then, we present an overview of GAR.

A. Sample Queries

As mentioned earlier, in order to provide correct NL2SQL
translation when training data is lacking, especially when
dealing with difficult queries with multiple SQL clauses, we
start with a set of sample queries to generate more data.
That is, GAR requires sample SQL queries to represent how
users query the database (and reflect how the particular table
organization is used in queries), and learns from them as a
starting point. The goal is to correctly translate queries that
are component-similar (defined after) to the given samples.

The requirement of sample queries on a database may be
hinted by some recent studies [19]-[21] that realized several
generalization challenges existing under a zero-shot cross-
domain setting (i.e., apply the trained model to an unseen
database) and proposed to perform few-shot learning for the
NL2SQL problem [15]. For example, the study in [21] shows
that the generalization performance of existing models has a
notable drop when domain knowledge is required for unseen
domains. Therefore, we believe that learning from sample
queries on a target database is a correct approach, since each
database is almost like a new “domain”.

B. Overview

A high-level view of GAR can be seen in Fig. 2. Given a
set of sample SQL queries, GAR first uses the following data
preparation process to generate dialect expressions during an
offline initialization phase: generalization and SQL2NL. After
the data preparation process, an LTR model is used to rank the
generated dialect expressions for the final translation. In a way,
this generate-and-rank method used in GAR is similar to the
one applied in Alphacode [22] to generate competition-level
code. We describe each step below.

Generalization. The step in Fig. 2-@ uses a set of generaliza-
tion rules to generalize the sample queries to provide a good
coverage for component-similar queries (defined after) while
limiting the resulting set to a manageable size. For example,

112

assume that the “gold” SQL query in Fig. 1b is given as a
sample query of the database. GAR should allow users to ask
an NL query like “Find the age of the employee who got the
highest one time bonus.”, which is expressed by a SQL query
that is component-similar to the “gold” SQL query.

To generalize the sample SQL queries, GAR first converts

each sample query to the corresponding parse tree, and then
implements a generalization process by recomposing, in a
controlled manner, the sub-trees in the set of parse trees to
synthesize a large set of component-similar SQL queries.
SQL2NL. The step in Fig. 2—@ uses a template-based
SQL2NL method [23]. Each clause of a SQL query is mapped
to an NL phrase mechanically with the help of a parsed query
tree. Then the phrases are combined into a sentence, which
we call a dialect expression. For example, the following is the
dialect expression for the gold SQL query in Fig. 1b: “Find
the name of employee regarding to evaluation with employee.
Return the top one result in descending order of one bonus
of the employee evaluation.”. Note that here we are able to
generate the phrase “one bonus” (instead of “all bonus” or
“total bonus”) since employee id is not the unique key of
the evaluation table.
LTR. The LTR model in Fig. 2-@ follows the LTR approach
[24] in information retrieval that trains a neural network
in a supervised manner. In GAR, the LTR model learns to
rank the semantic similarities between NL queries and dialect
expressions (explained below). The model is used to rank the
dialect expressions and then find the best-matching one for a
given NL query, leading to the translation result. For example,
for the given NL query “Find the name of the employee who
got the highest one time bonus.”, the model will output the
dialect expression example in the previous paragraph as the
highest ranked dialect expression result, and hence the “gold”
SQL query in Fig. 1b can be found as the translation result.

Fig. 3 shows the overall training phase of the LTR model
implemented in GAR. The training data of LTR model is
composed of a set of triples {(g;,d;, si)|¢; € Q,d; € D,0 <
s; < 1}11-\7:1, where ¢; represents an NL query, d; denotes a
dialect expression, and s; represents the semantic similarity
score between d; and ¢;, such that the more similar d; and ¢;
are, the more the score s; tends to 1. In this paper, given an

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

NLIDB NL Queries

Benchmark

(Gold)
SQL Queries

Dialect Expressions . .
Data Preparation (Positive+Negative Samples) @Semunﬂc Matching

Process

Network
(LTR Model)

Fig. 3: Training phase of the LTR model

NLIDB benchmark, we use all the NL queries in the bench-
mark as (), and employ the corresponding “gold” SQL queries
as the sample queries to generate the set of SQL queries and
their dialect expressions via the data preparation process in
the steps of Fig. 2-(1) and (2). The semantic similarity scores
are calculated as follows: If d; is exactly generated from the
“gold” SQL query of ¢;, then s; is set to 1. Such a triple
is called a positive sample. Otherwise, s; is calculated by
comparing each clause between (1) the corresponding SQL
query that generates d; in the data preparation process and (2)
the given “gold” SQL query for ¢; in the benchmark. Such a
triple is called a negative sample. The exact calculation of s;
is given in the next section.

III. GAR

In this section, we describe in detail the GAR data prepa-
ration process, the LTR model and its training method.

A. Compositional-based SQL Generalizer

The main observation of the generalization step is that SQL
is compositional in a context-free manner, which indicates
that each SQL query is formed by components that can be
recomposed to construct new SQL queries. We employ this
idea to introduce component-level generalization to generate
component-similar queries.

We first give the concept of the component, which is similar
to that of a query fragment introduced in [2].

Definition 1. A SQL component fakes the form of one of
the seven types given in Table 2.

TABLE 2: Query component types and examples

[Type [Comp Example [NL S i |

select SELECT employee.name Find the employee name

from FROM employee Employee

where WHERE employee.name="John" The employee named John

group GROUP BY employee.id For each employee ID

ORDER BY evaluation.bonus . .

order DESC LIMIT 1 The highest one time bonus
. FROM 1 IN 1 i . .
join ONOidEZEpfgizeJoid evaluation The employee with evaluation

compound INTERSECT id FROM employee (Find the ID of) the employee

P WHERE name="John" named John

As can be seen in the Table 2, some component types are
aligned with the corresponding SQL clauses, and others are
some combinations of them.

Definition 2. Given a set of sample queries, the component-
level generalization is a process that generates SQL queries
by recomposing the components that are in the given sample
queries. The queries generated by this process are said to be
component similar to the sample queries.

113

Note that since we assume all the query components come
from the given sample queries, GAR in the current setting may
fail on some “simple” cases where the SQL query includes one
or more simple but unseen query components. For example,
if the sample queries only have GROUP BY employee.id
but not the GROUP BY employee.name component, GAR
is not able to generate the SQL queries that include the latter
component. It will be an interesting future work direction to
see how such a limitation may be resolved, e.g., by examining
the database schema to obtain more basic components.

Based on the above definition, we use the parse tree to
represent the compositional characteristics of a SQL query. A
parse tree is an abstract syntax tree that represents the syntactic
structures of a SQL query according to the grammar [25]. For
example, Fig. 4a shows the two parse trees, where each parse
tree is constructed by a set of sub-trees (i.e., components); each
sub-tree is based on the production of the terminals (dotted-
line nodes) and non-terminals (solid-line nodes). The set of
sub-trees can be recomposed into a new parse tree, as shown
in Fig. 4b, and hence to a new SQL query. The new query may
further be fed to a SQL compiler to ensure its correctness.

Since the generalization process should not depend on
the specific literal values (e.g., a string value specified in a
predicate in a WHERE clause), we mask out literal values with
placeholders when converting the SQL queries to the corre-
sponding parse trees. In this way, we preserve the semantic
structure of the SQL queries irrespective of the exact values
used in the queries. This step makes the generalization process
succinctly handle queries with different literal values. A SQL
query that GAR handles represents the query with all possible
instantiation of its specific values.

1) Component-level Generalization: Given a set of sample
SQL queries, the generalization process is recursive: We first
randomly select two parse trees from the given query parse
trees. Secondly, we randomly choose a non-terminal node
type and select two sub-trees rooted with this node type from
the two chosen parse trees, respectively, and then recompose
the two parse trees by shuffling the two sub-trees. Thirdly,
we perform the syntactic and semantic checks of the newly
recomposed parse trees to ensure their correctness. Finally, we
put those valid recomposed parse trees back into the original
set and repeat the above steps until no more new parse tree
is generated. This process may generate an extensive set and
may not even stop in its general form. Therefore, we add some
composition rules (see below) to force the stopping condition
to satisfy and to make the resulting set manageable. We present
the compositional generalization process in Algorithm 1.
Recomposition Rules We observe that many generalized
SQL queries are syntactically correct but semantically not
component-similar to the sample set. Therefore, to make
the above generalization proceyouss tractable, we introduce
the following recomposition rules to prune out unnecessary
compositions during the generalization process.

e Rule 1 (Join Rule). As we discuss in Section IV, the join
operations may raise abstraction levels in semantics that
the SQL queries express. Since we only answer those NL

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

i

i i

{ employee.id

e>

r
H

SELECT T1.name, T1.employee_id

FROM employee AS T1

JOIN evaluation AS T2 ON Tl.employee_id=T2.employee_id
ORDER BY T2.bonus DESC LIMIT 1

:’ employee_id { = ! employee_id 5

(a) The parse trees of two SQL queries

(b) A recomposed example

Fig. 4: Two parse trees and an example of a recomposed SQL query result

Algorithm 1: Compositional Generalization Algorithm

Inputs : Given a set of parse trees T’
Output: A new set of parse trees T’
Procedure GENERALTIZE-QUERIES (7)) :
if no new parse tree generated in the previous iteration
then
| return T
t1,t2 < random select two parse trees from the set T
nt < random select an nonterminal from tl and t2
st1, sta < FIND-SUBTREES (nt,t1,12)
// Shuffle the substrees st; and stz in
tl and t2 to form two new trees
tlpew, t2new <— RECOMPOSE-TREES (st1, sta, t1,1t2)
// If tlpew (12pew) does not satisfy the
recomposition rules (see the below
section) or is not syntactically
valid, do not add into T
if VALIDATE-TREE (tlnew) then

| T=TUtlpew
if VALIDATE-TREE (t2ncw) then
| T=TUt2pew

// Recursive call
GENERALIZE-QUERIES (T)

queries if they can be expressed by the SQL queries that
have the user interested semantics in the given sample
queries, we require the join operations existing in the
generalized SQL queries to be consistent with those in
sample queries. In other words, the recomposed parse trees
of those SQL queries derived from different join paths
with those used in sample queries are excluded from the
generalized set. In the example of Fig. 4a, the “join” type
sub-tree of the top parse tree represents the join operation
of the corresponding SQL query. Suppose the sub-tree is
recomposed with a new “join” type sub-tree whose terminal
node is the shop table, and this new join operation does not

114

appear in the sample queries. In that case, the recomposed

parse tree is excluded.

Note that the join operation can appear explicitly with the

“join” keyword but may also be expressed with the WHERE

clause or correlated subquery. The generalization process

makes the best effort to apply this rule.

o Rule 2 (Syntactic Restriction). Since SQL allows unlimited
nesting and other ways to form a very large number of
SQL queries, we define a set of constraints to limit the
syntactic complexity of each SQL clause of the generalized
SQL queries. For example, we define a constraint for the
WHERE SQL clause that specifies the maximum number
of predicates that generalized SQL queries can have. All
the constraints are collected from the given sample queries,
which indicates that the complexity of generalized SQL
queries should be similar to the one in the sample queries.

o Rule 3 (Frequency Preservation). Intuitively, the generalized
SQL queries should reflect the user preference if the user is
more interested in particular semantics in the given database.
Hence, the generalization process generates more parse trees
with sub-trees that occur more frequently in the parse tree
set for the sample SQL queries.

o Rule 4 (Sub-query Preservation). We observe that in most
cases, a subquery only appears as a whole in various queries.
Therefore, we treat a subquery as a whole when performing
the recomposition. That is, we do not change any child nodes
of a subquery when making the generalization.

In this paper, we use the above four rules. It is an intended
future research problem to study if there are other rules to use
in generating component-similar queries, and to study how this
component-similar should be formally defined and enforced.

B. Template-assisted Dialect Builder

An essential question for GAR is how to translate a SQL
query to a dialect expression that is as correct, natural, and

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

meaningful as possible. The dialect builder of GAR is based
on the SQL2NL techniques that appeared in the literature
[23], [26]. Since the method in [26] currently is limited to
simple SQL queries, we follow the method introduced in [23]
to construct our dialect builder.

In this section, we provide a short description of the
approach in [23] (we call the method GRAPH-NL in the rest
of the paper) and then explain the improvements needed for
the purpose of GAR. We will discuss further enhancements
introduced in GAR-J for handling join queries in Section IV.

GRAPH-NL first treats a SQL query as a string and splits
the string into chunks representing each clause (much like
a sub-tree in a parse tree) in the query and then builds up
a graph for the SQL query clause by clause. A query graph
G4(Vy, E,) is a directed graph, where each node in V;, denotes
a query element in the SQL query, such as the column name
in the SELECT clause; Each edge in E, is associated with a
type, which denotes a specific relationship between two query
elements. For example, as for the SQL query in Fig. 4b, the
employee table node has a “select” type edge that connects
with the name column node and a “join” type edge that
connects with the evaluation table node. Next, GRAPH-
NL assigns each graph element, either a node or an edge, a
label® to represent its semantics. Finally, GRAPH-NL traverses
the query graph according to the different traversal algorithms
defined in the paper and then concatenates the element-based
labels found on the way to generate the NL expression by
using some descriptive expressions (e.g., ‘Find’, ‘for’, etc.).

GAR follows the methods introduced in GRAPH-NL but
made some changes: (1) Instead of using query graphs, GAR
directly uses parse trees to represent the SQL queries. Simi-
larly, GAR first assigns the “labels” for the nodes in a parse
tree and then traverses the parse tree in a pre-order fashion
to generate NL expression; (2) To support subqueries, GAR
treats each subquery as a whole (in the same way as the
recomposition process we described earlier in Section III-A),
and uses a specific node type to represent; (3) By leveraging
the database schema information, GAR adds more semantics
specific to the database along with the generation of dialect
expressions. For example, for the “one bonus” (or the “total
bonus”) semantics of column bonus in Fig. 1b, GAR first
checks the database key information of the underlying table
evaluation. Since the evaluation table has compound
keys (i.e., employee id and year awarded), GAR can
recognize the “one bonus” semantics of the column bonus.

Fig. 5 shows the dialect generation process for the top parse
tree in Fig. 4a, where each of the NL phrases highlighted
below is generated from the corresponding sub-tree of the
parse tree, and the dialect expression is then constructed by
concatenating those NL phrases.

%In our experiments, since the SPIDER benchmark provides the annotations
of column names and table names of its databases, we use those annotations as
node labels and provide the column and table annotations for GEO and QBEN
benchmarks in the same way. As for edge labels, we follow GRAPH-NL to
use default labels.

115

=
/ s BT

i ///
e "4 <C0nd>

employee i evaluation |f employee id

i lemployee | aluation D

iregarding to: the evaluation with employee. Return

in descending order of;ﬁne bonus of the employee evaluation
5 i

Fig. 5: An example of dialect expression generation

C. Neural Semantic Matching Network

Following the earlier works [27], [28] in the information
retrieval field, GAR employs the LTR technique to implement a
two-stage ranking pipeline with two separate machine learning
models to construct the semantic matching network. In the first
stage, a coarse-grained “retrieval model” is used to narrow the
relatively large set to a relatively small collection of potential
best-matching dialect expressions. Then a second-stage fine-
grained “re-ranking model” is used on the small set from the
first stage to get the final top-ranked dialect expressions.

Fig. 6 presents the overall network architectures of the
two models. More specifically, the network for the retrieval
model on the left side is based on the Siamese BERT-network
introduced in [29]. This retrieval model modifies the pre-
trained BERT network [30] using Siamese and triplet network
structures [31] to derive sentence embeddings. On the other
hand, the network of the re-ranking model on the right side
uses the sentence pair classification architecture derived from
BERT architecture to predict the possibility of relevance (bi-
nary classification) between the input NL-dialect query pairs.

A\ Similarity Function

©90009
OO Dense

() Classification

G+ dy dy ..
O (GEESE) o

(a) Retrieval model network (b) Re-ranking model network

Fig. 6: The architectures of the two ranking models

1) Retrieval Model: To select a subset of the dialect ex-
pressions from an extensive set, an efficient retrieval model
is helpful in quickly inferring the semantic similarity of each
dialect expression with the given NL query. The semantic sim-
ilarities inferred by the retrieval model may not be accurate,
but is suitable for the first-stage subset retrieval.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

Formally, given an NL query ¢ and a set of dialect
expressions D = {di,dq, - ,d,}, the inference objective
of the retrieval model is to produce the relevant scores
S = {s1,82, -, s} for the corresponding dialect expression
d; € D with respect to g. We can then use a threshold % to
select the first k highly ranked results as the subset of D.
Training Data The training data of the retrieval model is a
set of triples {(q;, d;, s;)})\.,, where g; is an NL query, d; is a
query dialect and s; is the semantic similarity score between
d; and g;. We calculate the score s; as follows. First, s; is set
to 1 initially, and then we compare each clause of the SQL
query that is used to obtain the dialect d; with the “gold”
query that is given for ¢;. If a clause is not the same, we give
a punishment on the s; value. Finally, the calculation process
ends until we have compared all the clauses or the s; value
drops to 0.

2) Re-ranking Model: Note that the retrieval model pro-
vides the re-ranking model with a much less but more rel-
evant subset of dialect expressions. Hence, the objective of
the second-stage re-ranking model is to accurately rank the
subset based on the semantics similarities with the given
NL query and then to find the top-ranked dialect expression.
Since more relevant dialect expressions with the given NL
query often share “confounding characteristics”, the re-ranking
model should be able to recognize them from the set.

Similar with the retrieval model, given an NL query ¢
and a set of dialect expressions D = {dy,ds,--- ,d,}, the
inference objective of the re-ranking model is to get the
ranked dialect expression set D' = {d;, d,, - - - ,d, } with their
corresponding relevant scores S = {5}, 55, , 5, }.
Training Data The training data of the re-ranking model is
defined as a set of triples {(q;,d;,1;)}},, where ¢; is an NL
query, d; is a dialect expression and [; is the corresponding
binary scores that indicate if d; is generated by the “gold”
SQL query of the NL query g; or not.

As we use the listwise approach [24] to train the re-
ranking model, we further group the training triples by
each NL query g¢;. Therefore, we finally obtain a set of
triples {(qj,Dj,Lj)}jJ\il, where ¢; is an NL query, D; =
{d;1,dj2,--- ,djn} is the list of dialect expressions with re-
spect to ¢;, and L; = {lj1,l;2,--- , 1, } are the corresponding
boolean values of D).

In addition, to make the training more efficient, we use a
subset of D’ of D for the training of the re-ranking model.
That is, after the retrieval model is trained, we set a threshold
k, and use the retrieval model to inference a subset of D/,
where the s; value of the d; is among top k.

IV. GAR-J

This section discusses the join operations in queries. We first
introduce the join annotation to capture the specific semantics
and then describe how GAR-J incorporates join annotations to
improve the GRAPH-NL method to handle queries with joins.

A. Join Annotation

We observe that the semantics expressed in a SQL query
may become much more abstract if the query involves join

116

operations. The intuition is that the output of a join operation
is a new “table”, and its semantics may not be directly inferred
from the names of the tables involved in the join or the names
of their columns. The join condition also plays an important
role in the semantics of join. Consider the example in Fig. 7a.
The meaning of the airports-£flights join path through
the foreign key destAirport refers to “arriving flights”,
which is hard to infer only from the textual information of the
table names. Hence, GAR and SMBOP fail similarly by using
the incorrect foreign key sourceAirport to join the two
tables, while GAP fails to generate the join condition at all.

Database Schema:

AIRLINES
[uid [airline [abbreviation [country

AIRPORTS] [FuGHTs
city [airportCode [airportName [country [countryAbbrev | [airline [flightNo [sourceAirport [destAirport |
p H

-==--® Column-»Column foreign keys (Known)

(a) A database schema in the SPIDER benchmark

NL Query: Which city has most number of arriving flights?
SQL Query: SELECT Tl.city FROM airports AS T1
(Gold) JOIN flights AS T2 ON Tl.airportCode = T2.destAirport

GROUP BY Tl.city ORDER BY COUNT (%) DESC LIMIT 1

GAR model
SELECT Tl.city FROM airports AS T1
JOIN flights AS T2 ON Tl.airportCode = T2.sourceAirport
GROUP BY Tl.city ORDER BY COUNT (%) DESC LIMIT 1

Generated SQL:
(Incorrect)

GAP model
SELECT Tl.city FROM airports AS T1
JOIN flights AS T2
GROUP BY Tl.city ORDER BY COUNT ()

Generated SQL:
(Incorrect)
DESC LIMIT 1

SMBOP model
SELECT T2.city FROM flights AS T1
JOIN airports AS T2 ON Tl.sourceAirport = T2.airportCode
GROUP BY T2.city ORDER BY COUNT (%) DESC LIMIT 1

Generated SQL:
(Incorrect)

(b) A pair of NL-SQL queries and the corresponding translation
results of GAR and the other two NLIDB models

Fig. 7: An example from the SPIDER benchmark

Based on these observations, we introduce join annotations
to capture the peculiar join semantics. We formulate the join
annotation with the following four aspects of information:

o Joining Tables. The annotation specifies which tables are
involved in the given join operation.

o Join Condition. The annotation specifies the condition
used in the given join operation. A condition conveys
a relationship used in joining the tables.

e Join Description. The annotation provides a description

that represents the semantics of the “new” table, much

like a new table name.

Table Keys. The annotation provides the key information

of the “new” table.

As an example, the join operation used in the sample SQL
query in Fig. 7b is annotated as follows,

Join Annotation

Joining Tables:
Join Condition:
Join Description:
Table Keys:

airports and flights
airports.airportCode=flights.destAirport
the flights arrive in the airports

flight

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

How to add join annotations automatically or semi-
automatically is an interesting research problem. In this paper,
we use a manual way to add join annotations by looking
into the given sample SQL queries for each given database,
and demonstrate its usefulness for queries with joins in our
experiments as shown in Section V-E.

B. Dialect Builder in GAR-J

Note that the NL expression generated by GRAPH-NL is
simply concatenating the labels of the graph elements, which
may only express the operations but fail to capture the implicit
semantics. For example, the following NL expression is the
translation result in GAR for the “gold” SQL query presented
in Fig. 7b,

Find the city of airports regarding to airports with flights.
Return the top one result for each city of airports in
descending order of the number of airports with flights.

Although the above NL sentence mostly talks about what
the query operations do, it does not capture the idea that the
description is for arriving flights in airports and the asterisk
(“*”) used in the ORDER BY clause means “flights”. This will
prevent GAR from finding the correct dialect expression (and
hence the SQL query).

To tackle the above problem, GAR-J further incorporates
the join annotations of a given databases into the translation
process, and hence improves the dialect translation results.
More specifically, GAR-J first examines the parse tree and adds
the join annotations as the “labels” to the tree as follows:

o If a set of sub-trees of the parse tree can be mapped to
a join operation of the SQL query, we first normalize
the parse tree by converting other forms (e.g., with the
WHERE clause) of the join operation to be the form of
the “join” type. After the normalization, the set of sub-
trees should be rooted with the same non-terminal node,
and hence we add the join annotation to the non-terminal
node to represent the “join” semantics.

If a terminal node is an asterisk (“*”), we look into the
parse tree to find the related node associated with either
a table annotation (name) or join annotation, and then
use the “Table Keys” information of the annotation to
annotate this asterisk node.

We also present the dialect generation process for the “gold”
SQL query in Fig. 7b below. As can be seen, in Fig. 8, each
NL phrase is formed by the associated labels of either the
terminal nodes or the “join” non-terminal node found in each
sub-tree. In particular, since GAR (and hence GAR-J) knows
the key information (i.e., flight) of the join annotation, the
asterisk node is annotated as “flight”, and hence COUNT (*)
is interpreted to “the number of flights” accordingly.

V. EXPERIMENTAL EVALUATION

This section evaluates GAR using the three existing NLIDB
benchmarks and then further discusses the importance of the
join semantics using the new QBEN benchmark as well as the

117

e e,
<Select>| <From> < = <(> <Limil>
s Desciplon e fgh's
=9 arrive in the airports < \

Table Keys: fiight

B
a5 ey =y
R e’ [— 1
flights it

airp: destination
code airport

S
airports

8]

; a & |
find; the city of airport regarding to; the flights arrive in the ai Returni the top one result §

for each%cifv of airport: in descending order of the number ofi flight
3

Fig. 8: An example of dialect expression generation with the
help of join annotation.

results of a user study to show the annotation cost. We use
the normalization script provided by the SPIDER benchmark to
do the query normalization” and then evaluate the translation
accuracy results on the validation set of SPIDER and the test
sets of GEO, MT-TEQL and QBEN, respectively.

A. Experimental Setup

1) Benchmarks: We use three NLIDB benchmarks to eval-
uate the performance of GAR: GEO, SPIDER and MT-TEQL.
Table 3 provides the detailed statistics about the three bench-
marks (and the QBEN benchmark).

GEO is a dataset that consists of NL queries over some geo-
graphical data in the form of a relational database with a single
table about the United States (GEObase). The corresponding
“gold” SQL queries are provided in [32]. The train, validation,
and test sets are all on the same database table.

SPIDER is a large-scale benchmark for complex and cross-
domain NL2SQL tasks. The benchmark splits SQL queries
into four types: Easy, Medium, Hard, and Extra Hard, based on
their hardness level. Unlike other existing NLIDB benchmarks,
SPIDER uses different databases in train and validation data
sets. That is, a database schema is used exclusively for either
training or validation, but not both.

Since the test set of SPIDER is hidden behind an evaluation
server, the experiments we perform are on the validation set.
MT-TEQL proposes a metamorphic testing-based framework
to conduct semantics-preserving transformations toward ut-
terances and schemas. MT-TEQL starts from the SPIDER
validation set and automatically generates a test set of a total
of 62,430 transformed testing samples. In our experiment, we
randomly sampled 10,000 testing queries as the test set.

2) Training Settings: The following illustrates the imple-
mentation details about the retrieval model and re-ranking
model used in our experiments®:

"The script decomposes each SQL into several clauses, respectively.
8We also tried some alternatives to the retrieval and re-ranking models, but
none worked well.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: The statistics of NLIDB benchmarks

Benchmark Data Set Databases ‘T*V”age Number of 11 Queries Nested | With ORDERBY | With GROUPBY | having Compound
ables per Database Queries
GEO Train/Validation/Test | the same one the same one 585/47/280 188/19/98 17/0/18 11/0/14 0/0/0
SPIDER Train/Validation 146/20 4.1/4.17 8659/1034 1249/155 1803/237 1953/277 526/78
MT-TEQL Validation/Test 20/63,464 4.17/4.34 1034/62,430 155/9949 237/14813 277/16404 78/4588
QBEN Train/Sample/Test 146/7/7 4.1/4.86/4.86 8659/293/200 | 1249/28/17 1803/38/24 1953/39/25 526/171

Retrieval Model The embedding layer of the retrieval model
is initialized with stsb-mpnet-base-v2° pre-trained model. We
use the Adam [33] optimizer with a learning rate of 2e-5 and
warmup over the first 10% of total steps to fine-tune the model.
Re-ranking Model is initialized with the ROBERTA [34] pre-
trained model. We use the Adam optimizer with a learning
rate of 5e-6 and adopt a learning rate schedule that reduces
the learning rate by a factor of 0.5 once learning stagnates,
i.e., the training metric has stopped improving, in training.

To accelerate the training phase (and the inference phase),
we only leverage the trained retrieval model to encode both the
NL queries and the large set of dialect expressions to get the
corresponding sentence embeddings. We then use the Faiss
library [35] for efficient similarity search to get the closest
subset of dialect expressions for each given NL query.

To better support the listwise learning paradigm, we further
group the training triples by NL query. We set the threshold &
to 100 to obtain a list of 100 dialects for each NL query and
set the batch size to 2 due to the GPU memory limit. We use
the listwise algorithm NeuraNDCG [36] to train the model.

3) Inference Settings: We use the same threshold (i.e.,
k=100) as in the training phase to get a subset from a large
dialect expression collection for the retrieval model and then
pass it along to the re-ranking model for the final inference.
Sample Queries Since GEO and SPIDER benchmarks only
provide test queries for their databases, we adopt the following
evaluation setting to evaluate GAR. We first use the SQL
queries of the SPIDER validation set and the GEO test set
to generate generalized query sets. Then we rule out all the
ground truth queries from the generalized query sets and use
the sets as the sample queries. For the MT-TEQL and QBEN
benchmarks, we use the SPIDER validation set and the sample
query set as sample queries and then evaluate on the test set.

For each database of the benchmarks, we randomly chose
20,000 generalized SQL queries'® from the large sets resulting
from the data preparation process and then made the inference.
We run the data preparation process five times for each
database in the benchmarks and report the average results.
Value Post-processing As GAR masks out the specific values
during the generalization process and does not use the cell
values of the databases for the translation process, after getting
the top-ranked results, we examine the dialect expressions
in the result set: If a value (e.g., “Spain”) appeared in the
given NL query, it strongly indicates that a particular column
(e.g., “country name”) should be mentioned in the dialect

9https://huggingface.co/sentence-transformers/stsb-mpnet-base-v2
10ye attempted to increase the generalization size to 30,000, but the result
was not significantly different, so we fixed the size in the current setting.

118

expression. Otherwise, the result set will drop those dialect
expressions that do not include the column name.

We also use this post-processing step to specify values for
the translation results of GAR for the purpose of evaluating
on execution accuracy metric described below.

4) Evaluation Metrics: Following are the metrics we adopt

to assess model performance:
Translation Accuracy If the top-ranked SQL query exactly
matches the “gold” SQL, then the translation is said to be
accurate. It is a performance lower bound since a semantically
correct SQL may differ from the “gold” one syntactically.

This metric is the same as the Exact Match Accuracy metric
suggested by SPIDER. After query normalization, the metric is
calculated by conducting set comparison in each SQL clause.
Execution Accuracy evaluates if the execution result matches
the ground truth by executing the generated SQL query against
the underlying relational database. This metric is the same as
the Execution Match Accuracy metric introduced in SPIDER.
Translation Precision at X (denoted Precision@ K'), where
K is a positive integer, is the number of NL queries that
an NLIDB system has the “gold” SQL queries in the top-K
translation results divided by the total number of NL queries.
In our experiments, we choose K to 1, 3, and 10, respectively.
Translation MRR (Mean Reciprocal Rank) is a statistical
measure [37] that can be used to evaluate a ranked list of SQL
queries for each NL query. The metric is defined as follows,

1L 1

MRR = N Z rank;

1

where NN denotes the number of given NL queries, rank;
refers to the rank position of the “gold” SQL query for the
ith NL query. Thus, the closer the value of MRR is to 1, the
more effective the translation ranking scheme is.

B. SPIDER&GEO Results

We compare GAR with four state-of-the-art machine
learning-based models!!, GAP, SMBOP, RAT-SQL [6] and
BRIDGE [7]. Fig. 9 shows the overall accuracy of GAR
comparing to the four models on the two existing benchmarks.

The results of the five methods on the GEO benchmark are
almost on par, all at around 70.0%, which is not as good as
those earlier rule-based NLIDB systems. The main reason is
that machine learning-based models may not get sufficiently
trained since the GEO benchmark only has one database, and
its number of training queries is small.

One notable result is that in the current setting, GAR
achieves 78.5% translation accuracy on the SPIDER validation

T Another state-of-the-art model NATSQL [10] was developed based on
RAT-SQL, but we fail to reproduce as the model code is unavailable.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

GaR [T GAP [] SMBOP [RAT-s0L gil] BRIDGE

< < <
~ > o
T T T
I

Translation Accuracy

<
o
T

-7
77
-7
27
27
-7
27
-7
27
-7
-7
77
-7
27
-7
7
27
-7
27
-7
27
27
-7
27
-7

0

T T
SPIDER GEO

Fig. 9: Translation accuracy on the corresponding valida-
tion/test set of the two NLIDB benchmarks.

set, outperforming the best reported accuracy 76.4% on the
SPIDER leaderboard by 2.1%.

TABLE 4: Breakdown results on the SPIDER validation set

Model Easy = Medium Hard Extra Hard Overall | Exec.
GAR 0.907 0.816 0.787 0.518 0.785 0.726
SmBop 0.890 0.791 0.644 0.470 0.737 0.752
BRIDGE 0911 0.733 0.540 0.392 0.687 0.680
GAP 0.915 0.742 0.644 0.494 0.727 0.349
RAT-sQL 0.851 0.735 0.580 0.476 0.694 0.341

Next, we conduct additional experiments to better under-
stand GAR. Table 4 provides a breakdown of the translation
accuracy and the execution accuracy on the SPIDER validation
set. Unsurprisingly, the performance of all the models drops
with increasing difficulty. However, the performance of GAR
is much more stable over the four categories. In particular,
GAR attains 78.7% accuracy for the “Hard” queries (176 out
of 1034 queries) and achieves 51.8% accuracy in the “Extra
Hard” category (166 out of 1034 queries), which surpasses
the best counterpart (i.e., SMBOP) by 4.8% absolute improve-
ment. In addition, by using value post-processing step, GAR
achieves 72.6% execution accuracy on the SPIDER validation
set, surpassing the other models, except the SMBOP model.

We also present the results on the SPIDER validation set
in terms of different SQL clause types in Table 5. Overall,
the performance of GAR is better over different SQL clauses
compared with the other four models. Notably, GAR is better at
handling complex SQL queries with nested sub-queries, which
achieves 69.8% accuracy.

TABLE 5: Translation accuracy on SPIDER by SQL clause types

Model Nested Negation ~ORDERBY GROUPBY Others
GAR 0.698 0.811 0.745 0.679 0.853
GAP 0.472 0.600 0.710 0.679 0.825

SMBOP 0.509 0.611 0.732 0.705 0.819

RAT-sQL 0.453 0.558 0.688 0.649 0.784
BRIDGE 0.528 0.589 0.636 0.568 0.793

Next, we study the effectiveness of the final ranking of GAR.
Note that in order to calculate the MRR values, we treat the
reciprocal rank as O if the “gold” dialect expression is not
returned in the final top-10 ranked results for a given NL query.
Table 6 shows the precision and MRR values over the two
NLIDB benchmarks, which indicates that in most cases, GAR

119

can correctly select the closest dialect expression (and hence
the SQL query) in the first few returned results.
TABLE 6: Precision and MRR values of GAR

Dataset MRR Precision@1 Precision@3 Precision@ 10
SPIDER 0.823 0.785 0.859 0.875
GEO 0.680 0.652 0.679 0.680

To evaluate the efficiency of GAR, we compare the pro-
cessing time with that of the other four models. Note that
since the data preparation process of GAR can be done entirely
offline, we make the the comparison in an online setting. That
is, we assume that all the trained neural network models in
all the methods have already been loaded into the memory,
and in particular, the generalized queries for the underlying
database in GAR have been generated offline!>. Table 10
shows that all models can react to a user query in real-time
(100s milliseconds), though GAR needs to take about 2x more
processing time than the other models (except SMBOP) since
ranking a large set of dialect expressions may be relatively
time-consuming. Note that SMBOP fails on almost all “Extra
Hard” queries and returns invalid queries as the translation
results, so a notable drop in its response time can be observed.

T T T T
o
Easy | 5 swor ||
asy B o
Medium | -
Hard | -
Extra Hard | [
el LU
1 1 1 1 1 1
0 100 200 300 400 500 600

Average Response Time (ms)
Fig. 10: Comparison of the average response time on the
SPIDER validation set, in terms of SQL difficulty levels.

C. MT-TEQL Results

Table 7 presents the results experimented on MT-TEQL.
GAR achieves 78.4% translation accuracy on the unknown
test set by utilizing the SPIDER validation set as the sample
queries, outperforming the other two baseline models.

TABLE 7: Translation results on a randomly selected test subset
(10,000 queries) of the MT-TEQL benchmark

Model Overall | Exec.
GAR + SPIDER validation set 0.784 0.693
SMBOP 0.726 0.705
BRIDGE 0.648 0.626
GAP N/A N/A
RAT-SQL N/A N/A

Since the MT-TEQL benchmark does not publish the test
databases, we cannot evaluate the RAT-SQL and GAP models
as they rely on the database content for the schema linking.

2For the 20,000 generalization size, GAR approximately takes 65s to
generate the SQL queries for each database in SPIDER benchmark on average.
In our work, we take the naive approach to make the generalization and leave
the optimization for future exploration.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

D. Ablation Study

We conduct an ablation study for both the dialect builder
and second-stage re-ranking model'? to verify the effectiveness
of these designs. As shown in Table 8, the performance of the
first-stage retrieval model drops sharply without using the di-
alects, while the re-ranking model retains a good performance
result in the setting. Moreover, we can see that the performance
of GAR has a remarkable drop without using the re-ranking
model, proving its importance in our approach.

TABLE 8: The ablation study of GAR on the SPIDER validation set.
The “w/o Dialect Builder” denotes learning the two ranking models
using SQL queries directly.

Retrieval Model

Re-ranking Model

Model Miss Count Miss Count Overall

Base Model (GAR) 33 132 0.785
w/o Dialect Builder 578 60 0.330
w/o Re-ranking Model 527 N/A 0.435

E. Experiments with GAR-J

To explore the importance of the join semantics, we add the

evaluation of the combination of GAR with join annotations
(GAR-J). Specifically, we manually add the join annotations
for QBEN benchmark (and also GEO and SPIDER), generate
the dialect expressions for all the generalized SQL queries with
the help of the annotations, and then re-train the two ranking
models using the same training settings as above.
QBEN uses the same train set as SPIDER but develops a sample
set and a test set that consists of 7 databases that are different
from those in the train set. The sample and test sets include
293/200 manually-curated NL-SQL query pairs. Each database
has a number of sample and test queries, where the test queries
for each are component-similar to those in the sample set. The
test databases of QBEN are made so that some insights into
the schemas are needed to construct the correct SQL queries.
Below is an example from the test set of QBEN:

NL: Give the “red bull” team mechanics’ first names.
SQL: SELECT T2.FName FROM mechanic AS T1

JOIN team_member AS T2 ON T1l.MechanicCode=T2.uid
JOIN teams AS T3 ON T2.TeamCode=T3.uid

WHERE T3.Name="red bull"

In the above, the meaning of the table formed by joining
mechanic, teams, and team member tables through the
foreign keys is unclear from the table names. Hence, all five
models, including GAR, fail the translation.
Results As shown in Fig. 11, GAR-J achieves 70.0% ac-
curacy, while GAR achieves 47.0% accuracy, and the other
machine learning-based models can only achieve about 20-
30% accuracy on the QBEN benchmark. It is important to
note that performing annotations bring about 23.0% absolute
improvements for GAR-J. The result demonstrates that join
annotation can efficiently capture the implicit semantics that
is hard to only infer the textual information of the table and
column names, especially for the queries with multiple joins.
13Since GAR leverages the retrieval model to filter extensive “irrelevant”

queries, relying only on the re-ranking model requires a prohibitive computing
cost. Therefore, we exclude the retrieval model from the ablation study.

120

1 L L L
[Gavs [B Gaw [T Gap] Smpop] Rat-soL [F5] BrivGe:

N < <
=~ =) o)

Translation Correctness

<
o

SPIDER GEO

QBEN
Fig. 11: Translation accuracy on the corresponding
tion/test set of the three NLIDB benchmark.

valida-

Another interesting finding is that the contribution of join

annotations may vary greatly across different NLIDB bench-
marks. For SPIDER and GEO benchmarks, GAR-J achieves
smaller improvements than the counterpart. We analyze the
results and reveal that most of the tables of the databases in the
two benchmarks are exact meaningful names, closely matching
the terms mentioned in the NL queries. Since GAR is built on
top of existing pre-trained language models, GAR can infer
most join semantics from the table names and select the SQL
query of the corresponding correct dialect expression.
User Study In the rest of this section, we report a user study to
assess the annotation cost needed to apply GAR-J. We asked
10 computer science students who have knowledge of SQL
and tasked them with annotating the join semantics of each
database in the NLIDB benchmarks. Firstly, participants were
briefed about the study and then provided sample annotations
on a toy database to explain the process. The databases were
equally distributed among all the participants and they used the
schema information and the given queries in the corresponding
benchmark to annotate. We recorded the completion time of
each participant for each database.

As shown in Fig. 12, the participants on average took about
3 minutes to complete for small databases with 1~2 tables;
For databases with 3~5 tables, the time cost was about 7
minutes; For rather complicated databases with 6~10 tables,
it took about 13 minutes on average.

The study shows that the annotation cost is relatively low
and can even be completed within a few minutes for small
databases. Yet the time requires for the task increases when
the database involves more tables and more sample queries.

#6~10 Table/DB
#3~5 Table/DB
#1~2 Table/DB

HT 1+
H
HI

Y
0 2 4 6 8 101214 16 18 20 22 24

Time(minutes)
Fig. 12: User Study Results: box plot of completion time for
different scales of schema size of databases.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

F. Analysis of GAR

To gain more understanding of GAR (and GAR-J), we
examine the failed cases in terms of translation accuracy. Table
9 lists the number of incorrectly answered NL queries in the
three NLIDB benchmarks, with respect to the three steps (data
preparation process, retrieval model, and re-ranking model).
We identify the following three major causes for the failures.

TABLE 9: Error analysis on each step of GAR/GAR-J
Data Preparation Retrieval Model Re-ranking Model

’ Dataset

Miss Count Miss Count Miss Count
GAR GAR-J GAR GAR-J GAR GAR-J
SPIDER 86 86 33 33 132 120
GEO 8 8 63 63 31 13
QBEN 7 7 34 21 65 32

« Generalization Coverage Problem. 22.8% of the failed
cases (i.e., the data preparation miss count) are because
GAR (and GAR-J) fail to generate the “gold” SQL queries.
The reason is that some databases in the benchmarks are
provided a relatively varied and large number of SQL
queries, leading to a poor coverage under the pre-defined
generalization size (20,000). To some extent, such failures
can be eliminated by increasing the size of the generalization
set, but in view of the extremely large sample SQL query
set, finding a more effective and efficient way to balance be-
tween achieving broad generalization coverage and limiting
the number of resulting queries may be indispensable.
Dialect Interpretation Problem. 25.4% of the failed cases
are caused by the retrieval model mostly due to semantic-
equivalent sentences with a clear length difference. For
example, for the NL query How long is the longest river
in California? (GEO), following is the dialect generated,

Find the length of river. Return results only for river that
traverse is California and river that length is the maximum
length of river that river that traverse is California.

The above dialect expression mostly captures the idea of
finding the longest river in California, but the interpretation
is lengthy. Learning a neural network model to help sum-
marize lengthy sentences may avoid such a problem.

o Re-ranking Problem. 53.7% of the failed cases are caused
by the re-ranking model failing to distinguish similar sen-
tences with minor differences over certain words among the
top-ranked results. For instance, an example in SPIDER,

NL Query: What is the name and capacity of the stadium
with the most concerts after 2013?

Dialect for the Gold SQL: Find the capacity of stadium,
the name of stadium regarding to stadiums that had
concerts. Return the top one result only for concert that
hosting year is or after 2014 for each of the stadium in
descending order of the number of concerts.

Top-ranked Dialect: Find the capacity of stadium, the
name of stadium regarding to stadiums that had concerts.
Return top one results only for concert that hosting year
is 2014 for each of the stadium in descending order of the
number of concerts.

121

Such failures may be avoided if we can find a way to prevent
the re-ranking model from collapsing from the confounding
characteristics among similar sentences.

VI. RELATED WORK

Natural Language Interface to Database. NLIDBs have
been studied for several decades in database management
and NLP communities. Early works [2], [14], [17], [38]-[42]
are rule-based approaches, which use handcrafted grammar
and rules to map NL queries to SQL queries specific to a
certain database. With the recent success of neural machine
translation, many machine learning-based approaches [3], [S]-
[13], [43], [44] have been proposed to build NLIDB systems,
which treat the NL2SQL problem as a translation task and
employ the encoder-decoder architecture to tackle the problem.
Natural language translations. Various ideas have been pro-
posed to address the SQL2NL problem [23], [26], [45]-[48].
[45], [46] discuss the usefulness of translating SQL queries
into NL perspective. Earlier attempts [49], [50] explicitly
study the problem of translating small databases under certain
constraints. [48] employs an iterative training procedure by
recursively augmenting the training set to generate the text.
Learning-to-rank The framework of LTR has been success-
fully applied in multiple areas, such as question answering
[51], recommendation [52], and document retrieval [53]. With
the recent advances in pre-training for text, many recent works
in this field have been proposed [27], [28], [54] by utilizing
the pre-trained language models [30], [34].

VII. CONCLUSION & FUTURE WORK

This paper proposed a practical approach named GAR
for the NL2SQL problem. GAR learns from sample queries
to generate a large set of SQL queries with corresponding
dialect expressions and utilizes the LTR technique to find
the final result. Experimental results showed that GAR beats
the four baseline methods on existing NLIDB benchmarks.
In addition, we extended GAR to GAR-J, which incorporates
join annotations into the SQL2NL process, to further improve
translation accuracy, particularly in the QBEN benchmark.

There are a number of directions for future work. For
example, in the current setting, GAR assumes that the given
sample queries are representative enough to generate all possi-
ble user-intended queries. To make GAR capable of handling
“out-of-domain” queries, we may adopt existing translation
models as the backbone and employ the model outputs to
augment sample queries for better coverage. Also, exploring an
automatic or semi-automatic way to add the join annotations
would be an interesting research topic. Lastly, another future
work is to consider augmenting the query components by
examining the underlying database schema to get some more
basic components for generalization.

VIII. ACKNOWLEDGMENTS

The authors would like to thank all the anonymous review-
ers for their insightful comments and suggestions. This work
was supported by NSFC (Grant No. 61732004, 62272106) and
the Zhejiang Lab (Grant No. 2021PEOACO1).

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]

[3]
[4]
[5]

[6]

[71
[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]
[24]

[25]

REFERENCES

I. Gur, S. Yavuz, Y. Su, and X. Yan, “Dialsql: Dialogue based structured
query generation,” in ACL, 2018.

C. Baik, H. V. Jagadish, and Y. Li, “Bridging the semantic gap with
SQL query logs in natural language interfaces to databases,” in ICDE,
2019.

B. Bogin, J. Berant, and M. Gardner, “Representing schema structure
with graph neural networks for text-to-sql parsing,” in ACL, 2019.

B. Bogin, M. Gardner, and J. Berant, “Global reasoning over database
structures for text-to-sql parsing,” in EMNLP, 2019.

J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang, “To-
wards complex text-to-sql in cross-domain database with intermediate
representation,” in ACL, 2019.

B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, “RAT-SQL:
relation-aware schema encoding and linking for text-to-sql parsers,” in
ACL, 2020.

X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular data
for cross-domain text-to-sql semantic parsing,” in EMNLP, 2020.

O. Rubin and J. Berant, “Smbop: Semi-autoregressive bottom-up seman-
tic parsing,” in NAACL, 2021.

P. Shi, P. Ng, Z. Wang, H. Zhu, A. H. Li, J. Wang, C. N. dos Santos,
and B. Xiang, “Learning contextual representations for semantic parsing
with generation-augmented pre-training,” in AAAZ, 2021.

Y. Gan, X. Chen, J. Xie, M. Purver, J. R. Woodward, J. H. Drake,
and Q. Zhang, “Natural SQL: making SQL easier to infer from natural
language specifications,” in EMNLP, 2021.

T. Scholak, N. Schucher, and D. Bahdanau, “PICARD: parsing in-
crementally for constrained auto-regressive decoding from language
models,” in EMNLP, 2021.

T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, L. Li,
Q. Yao, S. Roman, Z. Zhang, and D. R. Radev, “Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task,” in EMNLP, 2018.

B. Hui, R. Geng, L. Wang, B. Qin, Y. Li, B. Li, J. Sun, and Y. Li,
“S2sql: Injecting syntax to question-schema interaction graph encoder
for text-to-sql parsers,” in ACL, 2022.

J. Sen, C. Lei, A. Quamar, F. Ozcan, V. Efthymiou, A. Dalmia, G. Stager,
A. R. Mittal, D. Saha, and K. Sankaranarayanan, “ATHENA++: nat-
ural language querying for complex nested SQL queries,” PVLDB,
13(11):2747-2759, 2020.

A. Suhr, M. Chang, P. Shaw, and K. Lee, “Exploring unexplored
generalization challenges for cross-database semantic parsing,” in ACL,
2020.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in NIPS, 2014.

J. M. Zelle and R. J. Mooney, “Learning to parse database queries using
inductive logic programming,” in AAAI, 1996.

P. Ma and S. Wang, “Mt-teql: Evaluating and augmenting neural NLIDB
on real-world linguistic and schema variations,” PVLDB, 15(3):569-582,
2021.

Y. Gan, X. Chen, Q. Huang, M. Purver, J. R. Woodward, J. Xie, and
P. Huang, “Towards robustness of text-to-sql models against synonym
substitution,” in ACL, 2021.

X. Deng, A. H. Awadallah, C. Meek, O. Polozov, H. Sun, and
M. Richardson, “Structure-grounded pretraining for text-to-sql,” in
NAACL, 2021.

Y. Gan, X. Chen, and M. Purver, “Exploring underexplored limitations
of cross-domain text-to-sql generalization,” in EMNLP, 2021.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, T. Hubert, P. Choy,
C. de Masson d’Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl,
S. Gowal, A. Cherepanov, J. Molloy, D. Mankowitz, E. Suther-
land Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals,
“Competition-level code generation with alphacode,” arXiv preprint,
2022.

G. Koutrika, A. Simitsis, and Y. E. Ioannidis, “Explaining structured
queries in natural language,” in /CDE, 2010.

Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in ICML, 2007.

K. Lin, B. Bogin, M. Neumann, J. Berant, and M. Gardner, “Grammar-
based neural text-to-sql generation,” CoRR, 2019.

122

[26]
[27]
[28]
[29]

[30]

(31]
[32]
(33]

[34]

(35]
[36]
(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]
[48]
[49]
[50]

[51]

[52]

(53]
[54]

K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin, “Sql-to-text generation
with graph-to-sequence model,” in EMNLP, 2018.

Z. Dai and J. Callan, “Deeper text understanding for IR with contextual
neural language modeling,” in SIGIR, 2019.

S. Han, X. Wang, M. Bendersky, and M. Najork, “Learning-to-rank with
BERT in tf-ranking,” CoRR, 2020.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in EMNLP, 2019.

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
2019.

F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in CVPR, 2015.

S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer,
“Learning a neural semantic parser from user feedback,” in ACL, 2017.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, 2019.

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” arXiv preprint, 2017.

P. Pobrotyn and R. Bialobrzeski, “Neuralndcg: Direct optimisation of a
ranking metric via differentiable relaxation of sorting,” CoRR, 2021.
D. A. Hull, “Xerox TREC-8 question answering track report,” in TREC,
1999.

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language
interfaces to databases - an introduction,” Natural Language Engineer-
ing, 1(1):29-81, 1995.

A. Simitsis, G. Koutrika, and Y. E. Ioannidis, “Précis: from unstructured
keywords as queries to structured databases as answers,” PVLDB,
17(1):117-149, 2008.

L. S. Zettlemoyer and M. Collins, “Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars,”
in Uncertainty in Artificial Intelligence, UAI, 2005.

F. Li and H. V. Jagadish, “Constructing an interactive natural language
interface for relational databases,” PVLDB, 8(1):73-84, 2014.

D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R.
Mittal, and F. Ozcan, “ATHENA: an ontology-driven system for natural
language querying over relational data stores,” PVLDB, 9(12):1209—
1220, 2016.

X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured queries from
natural language without reinforcement learning,” CoRR, 2017.

T. Yu, C. Wu, X. V. Lin, B. Wang, Y. C. Tan, X. Yang, D. R. Radev,
R. Socher, and C. Xiong, “Grappa: Grammar-augmented pre-training for
table semantic parsing,” in ICLR, 2021.

Y. E. loannidis, “From databases to natural language: The unusual
direction,” in NLDB, 2008.

A. Simitsis and Y. E. Ioannidis, “Dbmss should talk back too,” in
Conference on Innovative Data Systems Research, CIDR, 2009.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in ACL, 2016.

C. Shu, Y. Zhang, X. Dong, P. Shi, T. Yu, and R. Zhang, “Logic-
consistency text generation from semantic parses,” in ACL, 2021.

A. Simitsis and G. Koutrika, “Comprehensible answers to précis
queries,” in CAiSE, 2006.

A. Simitsis, G. Koutrika, Y. Alexandrakis, and Y. E. Ioannidis, “Synthe-
sizing structured text from logical database subsets,” in EDBT, 2008.
L. Yang, Q. Ai, D. Spina, R. Chen, L. Pang, W. B. Croft, J. Guo,
and F. Scholer, “Beyond factoid QA: effective methods for non-factoid
answer sentence retrieval,” in ECIR, 2016.

Y. Duan, L. Jiang, T. Qin, M. Zhou, and H. Shum, “An empirical study
on learning to rank of tweets,” in COLING, 2010.

T. Liu, Learning to Rank for Information Retrieval. Springer, 2011.
X. Sun, H. Tang, F. Zhang, Y. Cui, B. Jin, and Z. Wang, “TABLE: A
task-adaptive bert-based listwise ranking model for document retrieval,”
in CIKM, 2020.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 06,2024 at 04:21:09 UTC from IEEE Xplore. Restrictions apply.

